首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We show that every Abelian group G with r0(G)=|G|=|G|ω admits a pseudocompact Hausdorff topological group topology T such that the space (G,T) is Fréchet-Urysohn. We also show that a bounded torsion Abelian group G of exponent n admits a pseudocompact Hausdorff topological group topology making G a Fréchet-Urysohn space if for every prime divisor p of n and every integer k≥0, the Ulm-Kaplansky invariant fp,k of G satisfies (fp,k)ω=fp,k provided that fp,k is infinite and fp,k>fp,i for each i>k.Our approach is based on an appropriate dense embedding of a group G into a Σ-product of circle groups or finite cyclic groups.  相似文献   

2.
In this paper, we undertake the study of the Tannaka duality construction for the ordinary representations of a proper Lie groupoid on vector bundles. We show that for each proper Lie groupoid G, the canonical homomorphism of G into the reconstructed groupoid T(G) is surjective, although — contrary to what happens in the case of groups — it may fail to be an isomorphism. We obtain necessary and sufficient conditions in order that G may be isomorphic to T(G) and, more generally, in order that T(G) may be a Lie groupoid. We show that if T(G) is a Lie groupoid, the canonical homomorphism GT(G) is a submersion and the two groupoids have isomorphic categories of representations.  相似文献   

3.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

4.
5.
We get an explicit lower bound for the radius of a Bergman ball contained in the Dirichlet fundamental polyhedron of a torsion free discrete group G伡PU(n,1)acting on complex hyperbolic space.As an application,we also give a lower bound for the volumes of complex hyperbolic n-manifolds.  相似文献   

6.
The discreteness of isometry groups in complex hyperbolic space is a fundamental problem. In this paper, the discreteness criteria of a n-dimensional subgroup G of SU(n,1) are investigated by using a test map which may not be in G.  相似文献   

7.
A sequence {an} in a group G is a T-sequence if there is a Hausdorff group topology τ on G such that . In this paper, we provide several sufficient conditions for a sequence in an abelian group to be a T-sequence, and investigate special sequences in the Prüfer groups Z(p). We show that for p≠2, there is a Hausdorff group topology τ on Z(p) that is determined by a T-sequence, which is close to being maximally almost-periodic—in other words, the von Neumann radical n(Z(p),τ) is a non-trivial finite subgroup. In particular, n(n(Z(p),τ))?n(Z(p),τ). We also prove that the direct sum of any infinite family of finite abelian groups admits a group topology determined by a T-sequence with non-trivial finite von Neumann radical.  相似文献   

8.
Let G ? SU(2, 1) be a non-elementary complex hyperbolic Kleinian group. If G preserves a complex line, then G is ?-Fuchsian; if G preserves a Lagrangian plane, then G is ?-Fuchsian; G is Fuchsian if G is either ?-Fuchsian or ?-Fuchsian. In this paper, we prove that if the traces of all elements in G are real, then G is Fuchsian. This is an analogous result of Theorem V.G. 18 of B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988, in the setting of complex hyperbolic isometric groups. As an application of our main result, we show that G is conjugate to a subgroup of S(U(1)×U(1, 1)) or SO(2, 1) if each loxodromic element in G is hyperbolic. Moreover, we show that the converse of our main result does not hold by giving a ?-Fuchsian group.  相似文献   

9.
Let V be a vector space over a field F. Assume that the characteristic of F is large, i.e. char(F)>dimV. Let T:VV be an invertible linear map. We answer the following question in this paper. When doesVadmit a T-invariant non-degenerate symmetric (resp. skew-symmetric) bilinear form? We also answer the infinitesimal version of this question.Following Feit and Zuckerman 2, an element g in a group G is called real if it is conjugate in G to its own inverse. So it is important to characterize real elements in GL(V,F). As a consequence of the answers to the above question, we offer a characterization of the real elements in GL(V,F).Suppose V is equipped with a non-degenerate symmetric (resp. skew-symmetric) bilinear form B. Let S be an element in the isometry group I(V,B). A non-degenerate S-invariant subspace W of (V,B) is called orthogonally indecomposable with respect to S if it is not an orthogonal sum of proper S-invariant subspaces. We classify the orthogonally indecomposable subspaces. This problem is non-trivial for the unipotent elements in I(V,B). The level of a unipotent T is the least integer k such that (T-I)k=0. We also classify the levels of unipotents in I(V,B).  相似文献   

10.
Some results on spanning trees   总被引:2,自引:0,他引:2  
Some structures of spanning trees with many or less leaves in a connected graph are determined.We show(1) a connected graph G has a spanning tree T with minimum leaves such that T contains a longest path,and(2) a connected graph G on n vertices contains a spanning tree T with the maximum leaves such that Δ(G) =Δ(T) and the number of leaves of T is not greater than n D(G)+1,where D(G) is the diameter of G.  相似文献   

11.
We show that a noncompact, complete, simply connected harmonic manifold (M d, g) with volume densityθ m(r)=sinhd-1 r is isometric to the real hyperbolic space and a noncompact, complete, simply connected Kähler harmonic manifold (M 2d, g) with volume densityθ m(r)=sinh2d-1 r coshr is isometric to the complex hyperbolic space. A similar result is also proved for quaternionic Kähler manifolds. Using our methods we get an alternative proof, without appealing to the powerful Cheeger-Gromoll splitting theorem, of the fact that every Ricci flat harmonic manifold is flat. Finally a rigidity result for real hyperbolic space is presented.  相似文献   

12.
Let T be any tree of order d≥1. We prove that every connected graph G with minimum degree d contains a subtree T isomorphic to T such that GV(T) is connected.  相似文献   

13.
We study those groups that act properly discontinuously, cocompactly, and isometrically on CAT(0) spaces with isolated flats. The groups in question include word hyperbolic CAT(0) groups as well as geometrically finite Kleinian groups and numerous two-dimensional CAT(0) groups. For such a group we show that there is an intrinsic notion of a quasiconvex subgroup which is equivalent to the subgroup being undistorted. We also show that the visual boundary of the CAT(0) space is actually an invariant of the group. More generally, we show that each quasiconvex subgroup of such a group has a canonical limit set which is independent of the choice of overgroup.The main results in this article were established by Gromov and Short in the word hyperbolic setting and do not extend to arbitrary CAT(0) groups.  相似文献   

14.
Let T(G) be the Teichmüller space of a Fuchsian group G and T(G) be the pointed Teichmüller space of a corresponding pointed Fuchsian group G.We will discuss the existence of holomorphic sections of the projection from the space M(G) of Beltrami coefficients for G to T(G) and of that from T(G) to T(G) as well.We will also study the biholomorphic isomorphisms between two pointed Teichmüller spaces.  相似文献   

15.
We introduce the notion of an -combing and use it to show that hyperbolic groups satisfy linear isoperimetric inequalities for filling real cycles in each positive dimension. S. Gersten suggested the concept of metabolicity (over or ) for groups which implies hyperbolicity. Metabolicity admits several equivalent definitions: by vanishing of -cohomology, using combings, and others. We prove several criteria for a group to be hyperbolic, -metabolicity being among them. In particular, a finitely presented group G is hyperbolic iff for any normed vector space V and any . Received December 9, 1998  相似文献   

16.
Let X be a compact connected Kähler manifold such that the holomorphic tangent bundle TX is numerically effective. A theorem of Demailly et al. (1994) [11] says that there is a finite unramified Galois covering MX, a complex torus T, and a holomorphic surjective submersion f:MT, such that the fibers of f are Fano manifolds with numerically effective tangent bundle. A conjecture of Campana and Peternell says that the fibers of f are rational and homogeneous. Assume that X admits a holomorphic Cartan geometry. We prove that the fibers of f are rational homogeneous varieties. We also prove that the holomorphic principal G-bundle over T given by f, where G is the group of all holomorphic automorphisms of a fiber, admits a flat holomorphic connection.  相似文献   

17.
Let G be a 2-dimensional connected, compact Abelian group and s be a positive integer. We prove that a classification of s-sheeted covering maps over G is reduced to a classification of s-index torsionfree supergroups of the Pontrjagin dual . Using group theoretic results from earlier paper we demonstrate its consequences. We also prove that for a connected compact group Y:
(1)
Every finite-sheeted covering map from a connected space over Y is equivalent to a covering homomorphism from a compact, connected group.
(2)
If two finite-sheeted covering homomorphisms over Y are equivalent, then they are equivalent as topological homomorphisms.
  相似文献   

18.
Let X be a locally compact Polish space and G a non-discrete Polish ANR group. By C(X,G), we denote the topological group of all continuous maps endowed with the Whitney (graph) topology and by Cc(X,G) the subgroup consisting of all maps with compact support. It is known that if X is compact and non-discrete then the space C(X,G) is an l2-manifold. In this article we show that if X is non-compact and not end-discrete then Cc(X,G) is an (R×l2)-manifold, and moreover the pair (C(X,G),Cc(X,G)) is locally homeomorphic to the pair of the box and the small box powers of l2.  相似文献   

19.
We consider cyclic groupsG generated by an ellipto-parabolic isometry of complex hyperbolic space. We show that the Dirichlet fundamental polyhedron forG centred atz 0 has two faces ifz 0 is on the axis of the generator, otherwise it has infinitely many faces.  相似文献   

20.
P is the class of pseudocompact Hausdorff topological groups, and P is the class of groups which admit a topology T such that (G,T)∈P. It is known that every G=(G,T)∈P is totally bounded, so for GP the supremum T(G) of all pseudocompact group topologies on G and the supremum T#(G) of all totally bounded group topologies on G satisfy TT#.The authors conjecture for abelian GP that T=T#. That equality is established here for abelian GP with any of these (overlapping) properties. (a) G is a torsion group; (b) |G|?c2; (c) r0(G)=|G|=ω|G|; (d) |G| is a strong limit cardinal, and r0(G)=|G|; (e) some topology T with (G,T)∈P satisfies w(G,T)?c; (f) some pseudocompact group topology on G is metrizable; (g) G admits a compact group topology, and r0(G)=|G|. Furthermore, the product of finitely many abelian GP, each with the property T(G)=T#(G), has the same property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号