首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
非线性互补约束均衡问题的一个SQP算法   总被引:5,自引:1,他引:4  
提出了一个求解非线性互补约束均衡问题(MPCC)的逐步逼近光滑SQP算法.通过一系列光滑优化来逼近MPCC.引入l<,1>精确罚函数,线搜索保证算法具有全局收敛性.进而,在严格互补及二阶充分条件下,算法是超线性收敛的.此外,当算法有限步终止,当前迭代点即为MPEC的一个精确稳定点.  相似文献   

2.
柳智 《运筹与管理》2023,(10):102-107
本文提出一种有效的神经网络剪枝方法。该方法对神经网络训练模型引入零模正则项来促使模型权重稀疏,并通过删减取值为零的权重来压缩模型。对所提出的零模正则神经网络训练模型,文中通过建立其等价MPEC形式的全局精确罚得到其等价的局部Lipschitz代理,然后通过用交替方向乘子法求解该Lipschitz代理模型对网络进行训练、剪枝。最后,对MLP和LeNet-5网络模型进行测试,分别在误差2.2%和1%下,取得97.43%和99.50%的稀疏度,达到很好的剪枝效果。  相似文献   

3.
针对不等式约束优化问题, 给出了通过二次函数对低阶精确罚函数进行光滑化逼近的两种函数形式, 得到修正的光滑罚函数. 证明了在一定条件下, 当罚参数充分大, 修正的光滑罚问题的全局最优解是原优化问题的全局最优解. 给出的两个数值例子说明了所提出的光滑化方法的有效性.  相似文献   

4.
本文给出了广义可微精确罚函数的概念及一类所谓广义限域可微精确罚函数.本文预先选定罚因子,将不等式约束问题化为单一的无约束问题,并给出了具全局收敛性的算法.本文的罚函数构造简单,假设条件少而且算法的构造与收敛性结果是独特的.  相似文献   

5.
本文对不等式约束优化问题给出了低阶精确罚函数的一种光滑化逼近.提出了通过搜索光滑化后的罚问题的全局解而得到原优化问题的近似全局解的算法.给出了几个数值例子以说明所提出的光滑化方法的有效性.  相似文献   

6.
全局精确罚函数的一个充要条件   总被引:2,自引:0,他引:2  
本文讨论有约束最优化问题全局解和相应的精确罚函数全局解之间的等价性,给出一个有限有效罚的准则,并证明这一准则是上述等价性的一个充要条件.在这个准则中不包含任何约束品性,这是最弱的条件之一  相似文献   

7.
本文考虑带不等式及等式约束的Lipschitz规划,在较弱的条件下讨论其L_1精确罚函数弱极点与K-T型条件的等价性,修正了[1]的结果.  相似文献   

8.
对不等式约束优化问题提出了一个低阶精确罚函数的光滑化算法. 首先给出了光滑罚问题、非光滑罚问题及原问题的目标函数值之间的误差估计,进而在弱的假
设之下证明了光滑罚问题的全局最优解是原问题的近似全局最优解. 最后给出了一个基于光滑罚函数的求解原问题的算法,证明了算法的收敛性,并给出数值算例说明算法的可行性.  相似文献   

9.
结合罚函数思想和广义梯度投影技术,提出求解非线性互补约束数学规划问题的一个广义梯度投影罚算法.首先,通过扰动技术和广义互补函数,将原问题转化为序列带参数的近似的标准非线性规划;其次,利用广义梯度投影矩阵构造搜索方向的显式表达式.一个特殊的罚函数作为效益函数,而且搜索方向能保证效益函数的下降性.在适当的假设条件下算法具有全局收敛性.  相似文献   

10.
针对等式及不等式约束极小化问题,通过对原问题添加一个变量,给出一个新的简单精确罚函数,即在该精确罚函数表达式中,不含有目标函数及约束函数的梯度.在满足某些约束品性的条件下,可以证明:当罚参数充分大时,所给出的罚问题的局部极小点是原问题的局部极小点.  相似文献   

11.
This paper proposes a mechanism to produce equivalent Lipschitz surrogates for zero-norm and rank optimization problems by means of the global exact penalty for their equivalent mathematical programs with an equilibrium constraint (MPECs). Specifically, we reformulate these combinatorial problems as equivalent MPECs by the variational characterization of the zero-norm and rank function, show that their penalized problems, yielded by moving the equilibrium constraint into the objective, are the global exact penalization, and obtain the equivalent Lipschitz surrogates by eliminating the dual variable in the global exact penalty. These surrogates, including the popular SCAD function in statistics, are also difference of two convex functions (D.C.) if the function and constraint set involved in zero-norm and rank optimization problems are convex. We illustrate an application by designing a multi-stage convex relaxation approach to the rank plus zero-norm regularized minimization problem.  相似文献   

12.
In this paper, we apply a partial augmented Lagrangian method to mathematical programs with complementarity constraints (MPCC). Specifically, only the complementarity constraints are incorporated into the objective function of the augmented Lagrangian problem while the other constraints of the original MPCC are retained as constraints in the augmented Lagrangian problem. We show that the limit point of a sequence of points that satisfy second-order necessary conditions of the partial augmented Lagrangian problems is a strongly stationary point (hence a B-stationary point) of the original MPCC if the limit point is feasible to MPCC, the linear independence constraint qualification for MPCC and the upper level strict complementarity condition hold at the limit point. Furthermore, this limit point also satisfies a second-order necessary optimality condition of MPCC. Numerical experiments are done to test the computational performances of several methods for MPCC proposed in the literature. This research was partially supported by the Research Grants Council (BQ654) of Hong Kong and the Postdoctoral Fellowship of The Hong Kong Polytechnic University. Dedicated to Alex Rubinov on the occassion of his 65th birthday.  相似文献   

13.
In this paper, a mathematical program with complementarity constraints (MPCC) is reformulated as a nonsmooth constrained mathematical program via the Fischer–Burmeister function. Smooth penalty functions are used to treat this nonsmooth constrained program. Under linear independence constraint qualification, and upper level strict complementarity condition, together with some other mild conditions, we prove that the limit point of stationary points satisfying second-order necessary conditions of unconstrained penalized problems is a strongly stationary point, hence a B-stationary point of the original MPCC. Furthermore, this limit point also satisfies a second-order necessary condition of the original MPCC. Numerical results are presented to test the performance of this method.  相似文献   

14.
We study computability and applicability of error bounds for a given semidefinite pro-gramming problem under the assumption that the recession function associated with the constraint system satisfies the Slater condition. Specifically, we give computable error bounds for the distances between feasible sets, optimal objective values, and optimal solution sets in terms of an upper bound for the condition number of a constraint system, a Lipschitz constant of the objective function, and the size of perturbation. Moreover, we are able to obtain an exact penalty function for semidefinite programming along with a lower bound for penalty parameters. We also apply the results to a class of statistical problems.  相似文献   

15.
In this paper, the zero–one constrained extremum problem is reformulated as an equivalent smooth mathematical program with complementarity constraints (MPCC), and then as a smooth ordinary nonlinear programming problem with the help of the Fischer–Burmeister function. The augmented Lagrangian method is adopted to solve the resulting problem, during which the non-smoothness may be introduced as a consequence of the possible inequality constraints. This paper incorporates the aggregate constraint method to construct a uniform smooth approximation to the original constraint set, with approximation controlled by only one parameter. Convergence results are established, showing that under reasonable conditions the limit point of the sequence of stationary points generated by the algorithm is a strongly stationary point of the original problem and satisfies the second order necessary conditions of the original problem. Unlike other penalty type methods for MPCC, the proposed algorithm can guarantee that the limit point of the sequence is feasible to the original problem.  相似文献   

16.
本文提出了几个非线性整规划 的全局精确光滑罚函数,每个罚函数有两个参数,并且给出了每个罚函数的精确罚参数的估计值,最后,我们举例说明了所提出的罚方法在具有整系数多项式目标函数以约束函数的整数规划中的应用。  相似文献   

17.
Bilevel programming problems are often reformulated using the Karush–Kuhn–Tucker conditions for the lower level problem resulting in a mathematical program with complementarity constraints(MPCC). Clearly, both problems are closely related. But the answer to the question posed is “No” even in the case when the lower level programming problem is a parametric convex optimization problem. This is not obvious and concerns local optimal solutions. We show that global optimal solutions of the MPCC correspond to global optimal solutions of the bilevel problem provided the lower-level problem satisfies the Slater’s constraint qualification. We also show by examples that this correspondence can fail if the Slater’s constraint qualification fails to hold at lower-level. When we consider the local solutions, the relationship between the bilevel problem and its corresponding MPCC is more complicated. We also demonstrate the issues relating to a local minimum through examples.  相似文献   

18.
Misclassification minimization   总被引:1,自引:0,他引:1  
The problem of minimizing the number of misclassified points by a plane, attempting to separate two point sets with intersecting convex hulls inn-dimensional real space, is formulated as a linear program with equilibrium constraints (LPEC). This general LPEC can be converted to an exact penalty problem with a quadratic objective and linear constraints. A Frank-Wolfe-type algorithm is proposed for the penalty problem that terminates at a stationary point or a global solution. Novel aspects of the approach include: (i) A linear complementarity formulation of the step function that counts misclassifications, (ii) Exact penalty formulation without boundedness, nondegeneracy or constraint qualification assumptions, (iii) An exact solution extraction from the sequence of minimizers of the penalty function for a finite value of the penalty parameter for the general LPEC and an explicitly exact solution for the LPEC with uncoupled constraints, and (iv) A parametric quadratic programming formulation of the LPEC associated with the misclassification minimization problem.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grants CCR-9101801 and CDA-9024618.  相似文献   

19.
Three constraint qualifications (the weak generalized Robinson constraint qualification, the bounded constraint qualification, and the generalized Abadie constraint qualification), which are weaker than the generalized Robinson constraint qualification (GRCQ) given by Yen (1997) [1], are introduced for constrained Lipschitz optimization problems. Relationships between those constraint qualifications and the calmness of the solution mapping are investigated. It is demonstrated that the weak generalized Robinson constraint qualification and the bounded constraint qualification are easily verifiable sufficient conditions for the calmness of the solution mapping, whereas the proposed generalized Abadie constraint qualification, described in terms of graphical derivatives in variational analysis, is weaker than the calmness of the solution mapping. Finally, those constraint qualifications are written for a mathematical program with complementarity constraints (MPCC), and new constraint qualifications ensuring the C-stationary point condition of a MPCC are obtained.  相似文献   

20.
It is well known that mathematical programs with equilibrium constraints (MPEC) violate the standard constraint qualifications such as Mangasarian–Fromovitz constraint qualification (MFCQ) and hence the usual Karush–Kuhn–Tucker conditions cannot be used as stationary conditions unless relatively strong assumptions are satisfied. This observation has led to a number of weaker stationary conditions, with Mordukhovich stationary (M-stationary) condition being the strongest among the weaker conditions. In nonlinear programming, it is known that MFCQ leads to an exact penalization. In this paper we show that MPEC GMFCQ, an MPEC variant of MFCQ, leads to a partial exact penalty where all the constraints except a simple linear complementarity constraint are moved to the objective function. The partial exact penalty function, however, is nonsmooth. By smoothing the partial exact penalty function, we design an algorithm which is shown to be globally convergent to an M-stationary point under an extended version of the MPEC GMFCQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号