首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
This paper considers a like-queue production system in which server vacations and breakdowns are possible. The decision-maker can turn a single server on at any arrival epoch or off at any service completion. We model the system by an M[x]/M/1 queueing system with N policy. The server can be turned off and takes a vacation with exponential random length whenever the system is empty. If the number of units waiting in the system at any vacation completion is less than N, the server will take another vacation. If the server returns from a vacation and finds at least N units in the system, he immediately starts to serve the waiting units. It is assumed that the server breaks down according to a Poisson process and the repair time has an exponential distribution. We derive the distribution of the system size through the probability generating function. We further study the steady-state behavior of the system size distribution at random (stationary) point of time as well as the queue size distribution at departure point of time. Other system characteristics are obtained by means of the grand process and the renewal process. Finally, the expected cost per unit time is considered to determine the optimal operating policy at a minimum cost. The sensitivity analysis is also presented through numerical experiments.  相似文献   

2.
We consider a discrete-time single-server queueing model where arrivals are governed by a discrete Markovian arrival process (DMAP), which captures both burstiness and correlation in the interarrival times, and the service times and the vacation duration times are assumed to have a general phase-type distributions. The vacation policy is that of a working vacation policy where the server serves the customers at a lower rate during the vacation period as compared to the rate during the normal busy period. Various performance measures of this queueing system like the stationary queue length distribution, waiting time distribution and the distribution of regular busy period are derived. Through numerical experiments, certain insights are presented based on a comparison of the considered model with an equivalent model with independent arrivals, and the effect of the parameters on the performance measures of this model are analyzed.  相似文献   

3.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a modified vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Further, we derive some important characteristics including the expected length of the busy period and idle period. This shows that the results generalize those of the multiple vacation policy and the single vacation policy M[x]/G/1 queueing system. Finally, a cost model is developed to determine the optimum of J at a minimum cost. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We consider an M/M/R queue with vacations, in which the server works with different service rates rather than completely terminates service during his vacation period. Service times during vacation period, service times during service period and vacation times are all exponentially distributed. Neuts’ matrix–geometric approach is utilized to develop the computable explicit formula for the probability distributions of queue length and other system characteristics. A cost model is derived to determine the optimal values of the number of servers and the working vacation rate simultaneously, in order to minimize the total expected cost per unit time. Under the optimal operating conditions, numerical results are provided in which several system characteristics are calculated based on assumed numerical values given to the system parameters.  相似文献   

5.
This paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup and closedown times, in which the length of the vacation period is controlled either by the number of arrivals during the vacation period, or by a timer. After all the customers are served in the queue exhaustively, the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server immediately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup time before providing the service until the system is empty. If some customers arrive during this closedown time, the service is immediately started without leaving for a vacation and without a startup time. We analyze the system characteristics for each scheme.  相似文献   

6.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under vacation policies with startup/closedown times, where the vacation time, the startup time, and the closedown time are generally distributed. When all the customers are served in the system exhaustively, the server shuts down (deactivates) by a closedown time. After shutdown, the server operates one of (1) multiple vacation policy and (2) single vacation policy. When the server reactivates since shutdown, he needs a startup time before providing the service. If a customer arrives during a closedown time, the service is immediately started without a startup time. The server may break down according to a Poisson process while working and his repair time has a general distribution. We analyze the system characteristics for the vacation models.  相似文献   

7.
This paper analyzes a discrete-time Geo/Geo/1 queueing system with the server subject to breakdowns and repairs, in which two different possible types of the server breakdowns are considered. In Type 1, the server may break down only when the system is busy, while in Type 2, the server can break down even if the system is idle. The server lifetimes are assumed to be geometrical and the server repair times are also geometric distributions. We model this system by the level-dependent quasi-birth-death (QBD) process and develop computation algorithms of the stationary distribution of the number of customers in the system using the matrix analytic method. The search algorithm for parameter optimization based on a cost model is developed and performed herein.  相似文献   

8.
We study a single server queueing system whose arrival stream is compound Poisson and service times are generally distributed. Three types of idle period are considered: threshold, multiple vacations, and single vacation. For each model, we assume after the idle period, the server needs a random amount of setup time before serving. We obtain the steady-state distributions of system size and waiting time and expected values of the cycle for each model. We also show that the distributions of system size and waiting time of each model are decomposed into two parts, whose interpretations are provided. As for the threshold model, we propose a method to find the optimal value of threshold to minimize the total expected operating cost.  相似文献   

9.
This paper studies the M/M/1 machine repair problem with working vacation in which the server works with different repair rates rather than completely terminating the repair during a vacation period. We assume that the server begins the working vacation when the system is empty. The failure times, repair times, and vacation times are all assumed to be exponentially distributed. We use the MAPLE software to compute steady-state probabilities and several system performance measures. A cost model is derived to determine the optimal values of the number of operating machines and two different repair rates simultaneously, and maintain the system availability at a certain level. We use the direct search method and Newton’s method for unconstrained optimization to repeatedly find the global minimum value until the system availability constraint is satisfied. Some numerical examples are provided to illustrate Newton’s method.  相似文献   

10.
This paper analyzes the finite-buffer single server queue with vacation(s). It is assumed that the arrivals follow a batch Markovian arrival process (BMAP) and the server serves customers according to a non-exhaustive type gated-limited service discipline. It has been also considered that the service and vacation distributions possess rational Laplace-Stieltjes transformation (LST) as these types of distributions may approximate many other distributions appeared in queueing literature. Among several batch acceptance/rejection strategies, the partial batch acceptance strategy is discussed in this paper. The service limit L (1 ≤ LN) is considered to be fixed, where N is the buffer-capacity excluding the one in service. It is assumed that in each busy period the server continues to serve until either L customers out of those that were waiting at the start of the busy period are served or the queue empties, whichever occurs first. The queue-length distribution at vacation termination/service completion epochs is determined by solving a set of linear simultaneous equations. The successive substitution method is used in the steady-state equations embedded at vacation termination/service completion epochs. The distribution of the queue-length at an arbitrary epoch has been obtained using the supplementary variable technique. The queue-length distributions at pre-arrival and post-departure epoch are also obtained. The results of the corresponding infinite-buffer queueing model have been analyzed briefly and matched with the previous model. Net profit function per unit of time is derived and an optimal service limit and buffer-capacity are obtained from a maximal expected profit. Some numerical results are presented in tabular and graphical forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号