首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we consider isometric immersions ${f : M \rightarrow \tilde{M}(c)}$ of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form ${\tilde{M}^{2m+1}}$ of constant ${ \varphi}$ -sectional curvature c. We have shown that if f satisfies the curvature condition ${\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}$ or ${||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}$ at some point x of M 2n+1. We also prove that ${\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}$ , or ${||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}$ at some point x of M 2n+1.  相似文献   

2.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

3.
Let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{k}$ be a reductive subalgebra in $\mathfrak{g}$ . We say that a $\mathfrak{g}$ -module M is a $(\mathfrak{g},\mathfrak{k})$ -module if M, considered as a $\mathfrak{k}$ -module, is a direct sum of finite-dimensional $\mathfrak{k}$ -modules. We say that a $(\mathfrak{g},\mathfrak{k})$ -module M is of finite type if all $\mathfrak{k}$ -isotopic components of M are finite-dimensional. In this paper we prove that any simple $(\mathfrak{g},\mathfrak{k})$ -module of finite type is holonomic. A simple $\mathfrak{g}$ -module M is associated with the invariants V(M), V(LocM), and L(M) reflecting the ??directions of growth of M.?? We also prove that for a given pair $(\mathfrak{g},\mathfrak{k})$ the set of possible invariants is finite.  相似文献   

4.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

5.
For real ${L_\infty(\mathbb{R})}$ -functions ${\Phi}$ and ${\Psi}$ of compact support, we prove the norm resolvent convergence, as ${\varepsilon}$ and ${\nu}$ tend to 0, of a family ${S_{\varepsilon \nu}}$ of one-dimensional Schrödinger operators on the line of the form $$S_{\varepsilon \nu} = -\frac{d^2}{dx^2} + \frac{\alpha}{\varepsilon^2} \Phi \left( \frac{x}{\varepsilon} \right) + \frac{\beta}{\nu} \Psi \left(\frac{x}{\nu} \right),$$ provided the ratio ${\nu/\varepsilon}$ has a finite or infinite limit. The limit operator S 0 depends on the shape of ${\Phi}$ and ${\Psi}$ as well as on the limit of ratio ${\nu/\varepsilon}$ . If the potential ${\alpha\Phi}$ possesses a zero-energy resonance, then S 0 describes a non trivial point interaction at the origin. Otherwise S 0 is the direct sum of the Dirichlet half-line Schrödinger operators.  相似文献   

6.
A classical result states that every lower bounded superharmonic function on ${\mathbb{R}^{2}}$ is constant. In this paper the following (stronger) one-circle version is proven. If ${f : \mathbb{R}^{2} \to (-\infty,\infty]}$ is lower semicontinuous, lim inf|x|→∞ f (x)/ ln |x| ≥ 0, and, for every ${x \in \mathbb{R}^{2}}$ , ${1/(2\pi) \int_0^{2\pi} f(x + r(x)e^{it}) \, dt \le f(x)}$ , where ${r : \mathbb{R}^{2} \to (0,\infty)}$ is continuous, ${{\rm sup}_{x \in \mathbb{R}^{2}} (r(x) - |x|) < \infty},$ , and ${{\rm inf}_{x \in \mathbb{R}^{2}} (r(x)-|x|)=-\infty}$ , then f is constant. Moreover, it is shown that, assuming rc| · | + M on ${\mathbb{R}^d}$ , d ≤ 2, and taking averages on ${\{y \in \mathbb{R}^{d} : |y-x| \le r(x)\}}$ , such a result of Liouville type holds for supermedian functions if and only if cc 0, where c 0 = 1, if d = 2, whereas 2.50 < c 0 < 2.51, if d = 1.  相似文献   

7.
Extending a result of Meyer and Reisner (Monatsh Math 125:219–227, 1998), we prove that if ${g: \mathbb{R}\to \mathbb{R}_+}$ is a function which is concave on its support, then for every m > 0 and every ${z\in\mathbb{R}}$ such that g(z) > 0, one has $$ \int\limits_{\mathbb{R}} g(x)^mdx\int\limits_{\mathbb{R}} (g^{*z}(y))^m dy\ge \frac{(m+2)^{m+2}}{(m+1)^{m+3}},$$ where for ${y\in \mathbb{R}}$ , ${g^{*z}(y)=\inf_x \frac{(1-(x-z)y)_+}{g(x)}}$ . It is shown how this inequality is related to a special case of Mahler’s conjecture (or inverse Santaló inequality) for convex bodies. The same ideas are applied to give a new (and simple) proof of the exact estimate of the functional inverse Santaló inequality in dimension 1 given in Fradelizi and Meyer (Adv Math 218:1430–1452, 2008). Namely, if ${\phi:\mathbb{R}\to\mathbb{R}\cup\{+\infty\}}$ is a convex function such that ${0 < \int e^{-\phi} < +\infty}$ then, for every ${z\in\mathbb{R}}$ such that ${\phi(z) < +\infty}$ , one has $$ \int\limits_{\mathbb{R}}e^{-\phi}\int\limits_{\mathbb{R}} e^{-\mathcal{L}^z\phi}\ge e,$$ where ${\mathcal {L}^z\phi}$ is the Legendre transform of ${\phi}$ with respect to z.  相似文献   

8.
Let ${f:\Omega \rightarrow \mathbb{R}}$ be a smooth function on a domain   ${\Omega \subset \mathbb{C}^n}$ with its Hessian matrix ${\left( \frac{\partial^2 f}{\partial z^i \partial\bar{z}^j}\right)}$ positive Hermitian. In this paper, we investigate a class of partial differential equations $$\Delta \ln \det (f_{i\bar{j}}) = \beta \;\| \text{grad} \ln \det (f_{i\bar{j}}) \|^2, $$ where Δ and ${\| \cdot \|}$ are the Laplacian and tensor norm, respectively, with respect to the metric ${G = \sum f_{i\bar{j}} \,dz^i \otimes d\bar{z}^j}$ , and β > 1 is some real constant depending on the dimension n. We prove that the above PDEs have a Bernstein property when the metric G is complete, provided that ${\det (f_{i\bar{j}})}$ and the Ricci curvature are bounded.  相似文献   

9.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

10.
Let ${\vartheta}$ be a measure on the polydisc ${\mathbb{D}^n}$ which is the product of n regular Borel probability measures so that ${\vartheta([r,1)^n\times\mathbb{T}^n) >0 }$ for all 0 < r < 1. The Bergman space ${A^2_{\vartheta}}$ consists of all holomorphic functions that are square integrable with respect to ${\vartheta}$ . In one dimension, it is well known that if f is continuous on the closed disc ${\overline{\mathbb{D}}}$ , then the Hankel operator H f is compact on ${A^2_\vartheta}$ . In this paper we show that for n ≥ 2 and f a continuous function on ${{\overline{\mathbb{D}}}^n}$ , H f is compact on ${A^2_\vartheta}$ if and only if there is a decomposition f = h + g, where h belongs to ${A^2_\vartheta}$ and ${\lim_{z\to\partial\mathbb{D}^n}g(z)=0}$ .  相似文献   

11.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

12.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

13.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

14.
We consider the pseudo-euclidean space ${(\mathbb{R}^n, g)}$ , with n ≥  3 and ${g_{ij} = \delta_{ij} \varepsilon_i, \varepsilon_i = \pm 1}$ and tensors of the form ${T = \sum \nolimits_i \varepsilon_i f_i (x) dx_i^2}$ . In this paper, we obtain necessary and sufficient conditions for a diagonal tensor to admit a metric ${\bar{g}}$ , conformal to g, so that ${A_{\bar g}=T}$ , where ${A_{\bar g}}$ is the Schouten Tensor of the metric ${\bar g}$ . The solution to this problem is given explicitly for special cases for the tensor T, including a case where the metric ${\bar g}$ is complete on ${\mathbb{R}^n}$ . Similar problems are considered for locally conformally flat manifolds. As an application of these results we consider the problem of finding metrics ${\bar g}$ , conformal to g, such that ${\sigma_2 ({\bar g })}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })}}$ is equal to a given function. We prove that for some functions, f 1 and f 2, there exist complete metrics ${\bar{g} = g/{\varphi^2}}$ , such that ${\sigma_2 ({\bar g }) = f_1}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })} = f_2}$ .  相似文献   

15.
We examine the fourth order problem $\Delta ^2 u = \lambda f(u) $ in $ \Omega $ with $ \Delta u = u =0 $ on $ {\partial \Omega }$ , where $ \lambda > 0$ is a parameter, $ \Omega $ is a bounded domain in $\mathbb{R }^N$ and where $f$ is one of the following nonlinearities: $ f(u)=e^u$ , $ f(u)=(1+u)^p $ or $ f(u)= \frac{1}{(1-u)^p}$ where $ p>1$ . We show the extremal solution is smooth, provided $$\begin{aligned} N < 2 + 4 \sqrt{2} + 4 \sqrt{ 2 - \sqrt{2}} \approx 10.718 \text{ when} f(u)=e^u, \end{aligned}$$ and $$\begin{aligned} N < \frac{4p}{p-1} + \frac{4(p+1)}{p-1} \left( \sqrt{ \frac{2p}{p+1}} + \sqrt{ \frac{2p}{p+1} - \sqrt{ \frac{2p}{p+1}}} - \frac{1}{2} \right) \end{aligned}$$ when $ f(u)=(u+1)^p$ . New results are also obtained in the case where $ f(u)=(1-u)^{-p}$ . These are substantial improvements to various results on critical dimensions obtained recently by various authors. To do that, we derive a new stability inequality satisfied by minimal solutions of the above equation, which is more amenable to estimates as it allows a method of proof reminiscent of the second order case.  相似文献   

16.
Let N be a maximal and discrete nest on a separable Hilbert space H,E the projection from H onto the subspace[C]spanned by a particular separating vector for N′and Q the projection from K=H⊕H onto the closed subspace{(,):∈H}.Let L be the closed lattice in the strong operator topology generated by the projections(E 00 0),{(E 00 0):E∈N}and Q.We show that L is a Kadison-Singer lattice with trivial commutant,i.e.,L′=CI.Furthermore,we similarly construct some Kadison-Singer lattices in the matrix algebras M2n(C)and M2n.1(C).  相似文献   

17.
Let M be a compact orientable n-dimensional hypersurface, with nowhere vanishing mean curvature H, immersed in a Riemannian spin manifold ${\overline{M}}$ admitting a non trivial parallel spinor field. Then the first eigenvalue ${\lambda_1(D_{M}^{H})}$ (with the lowest absolute value) of the Dirac operator ${D_{M}^{H}}$ corresponding to the conformal metric ${\langle\;,\;\rangle^{H}=H^{2}\,\langle\;,\;\rangle}$ , where ${\langle\;,\;\rangle}$ is the induced metric on M, satisfies ${\left|\lambda_1(D_{M}^{H})\right|\le \frac{n}{2}}$ . By applying the Bourguignon-Gauduchon first variational formula, we obtain a necessary condition for ${\left|\lambda_1(D_{M}^{H})\right|=\frac{n}{2}}$ . As a consequence, we prove that round hyperspheres are the only hypersurfaces of the Euclidean space satisfying the equality in the Bär inequality $$\lambda_1(D_{M})^{2}\le \frac{n^{2}}{4{vol}(M)}\int_{M} H^{2}\, dV,$$ where D M stands now for the Dirac operator of the induced metric.  相似文献   

18.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

19.
20.
A residual existence theorem for linear equations   总被引:1,自引:0,他引:1  
A residual existence theorem for linear equations is proved: if ${A \in \mathbb{R}^{m\times n}}$ , ${b \in \mathbb{R}^{m}}$ and if X is a finite subset of ${\mathbb{R}^{n}}$ satisfying ${{\rm max}_{x \in X}p^T(Ax-b) \geq 0}$ for each ${p \in \mathbb{R}^{m}}$ , then the system of linear equations Axb has a solution in the convex hull of X. An application of this result to unique solvability of the absolute value equation Ax + B|x| = b is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号