首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
The single machine scheduling problem with two types of controllable parameters, job processing times and release dates, is studied. It is assumed that the cost of compressing processing times and release dates from their initial values is a linear function of the compression amounts. The objective is to minimize the sum of the total completion time of the jobs and the total compression cost. For the problem with equal release date compression costs we construct a reduction to the assignment problem. We demonstrate that if in addition the jobs have equal processing time compression costs, then it can be solved in O(n2) time. The solution algorithm can be considered as a generalization of the algorithm that minimizes the makespan and total compression cost. The generalized version of the algorithm is also applicable to the problem with parallel machines and to a range of due-date scheduling problems with controllable processing times.  相似文献   

2.
This paper considers single-machine scheduling problems with job delivery times where the actual job processing time of a job is defined by a function dependent on its position in a schedule. We assume that the job delivery time is proportional to the job waiting time. We investigate the minimization problems of the sum of earliness, tardiness, and due-window-related cost, the total absolute differences in completion times, and the total absolute differences in waiting times on a single-machine setting. The polynomial time algorithms are proposed to optimally solve the above objective functions. We also investigate some special cases of the problem under study and show that they can be optimally solved by lower order algorithms.  相似文献   

3.
We consider single-machine scheduling problems in which the processing time of a job is a function of its starting time and its resource allocation. The objective is to find the optimal sequence of jobs and the optimal resource allocation separately. We concentrate on two goals separately, namely, minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost; minimizing a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. We show that the problems remain polynomially solvable under the proposed model.  相似文献   

4.
The paper deals with the single-machine scheduling problem in which job processing times as well as release dates are controllable parameters and they may vary within given intervals. While all release dates have the same boundary values, the processing time intervals are arbitrary. It is assumed that the cost of compressing processing times and release dates from their initial values is a linear function of the compression amount. The objective is to minimize the makespan together with the total compression cost. We construct a reduction to the assignment problem for the case of equal release date compression costs and develop an O(n2) algorithm for the case of equal release date compression costs and equal processing time compression costs. For the bicriteria version of the latter problem with agreeable processing times, we suggest an O(n2) algorithm that constructs the breakpoints of the efficient frontier.  相似文献   

5.
《Applied Mathematical Modelling》2014,38(19-20):4747-4755
We consider unrelated parallel machines scheduling problems involving resource dependent (controllable) processing times and deteriorating jobs simultaneously, i.e., the actual processing time of a job is a function of its starting time and its resource allocation. Two generally resource consumption functions, the linear and convex resource, were investigated. The objective is to find the optimal sequence of jobs and the optimal resource allocation separately. This paper focus on the objectives of minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost, and a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. If the number of unrelated parallel machines is a given constant, we show that the problems remain polynomially solvable under the proposed model.  相似文献   

6.
We consider the problem of scheduling a set of jobs with different release times on parallel machines so as to minimize the makespan of the schedule. The machines have the same processing speed, but each job is compatible with only a subset of those machines. The machines can be linearly ordered such that a higher-indexed machine can process all those jobs that a lower-indexed machine can process. We present an efficient algorithm for this problem with a worst-case performance ratio of 2. We also develop a polynomial time approximation scheme (PTAS) for the problem, as well as a fully polynomial time approximation scheme (FPTAS) for the case in which the number of machines is fixed.  相似文献   

7.
In this note we consider some single-machine scheduling problems with decreasing time-dependent job processing times. Decreasing time-dependent job processing times means that its processing time is a non-increasing function of its execution start time. We present polynomial solutions for the sum of squared completion times minimization problem, and the sum of earliness penalties minimization problem subject to no tardy jobs, respectively. We also study two resource constrained scheduling problems under the same decreasing time-dependent job processing times model and present algorithms to find their optimal solutions.  相似文献   

8.
This paper addresses single-machine scheduling and due-window assignment with common flow allowances and resource-dependent processing times. Due-window assignment with common flow allowances means that each job has a job-dependent due window, the start time and finish time of which are equal to its actual processing time plus individual job-independent parameters shared by all the jobs, respectively. The processing time of each job can be controlled by extra resource allocation as a linear function of the amount of a common continuously divisible resource allocated to the job. Two criteria are considered, where one criterion is an integrated cost consisting of job earliness, weighted number of tardy jobs, and due-window assignment cost, while the other criterion is the resource consumption cost. Four different models are considered for treating the two criteria. It is shown that the problem under the model where the two criteria are integrated into a single criterion is polynomially solvable, while the problems under the other three models are all NP-hard and an optimal solution procedure is developed for them. Two polynomially solvable cases are also identified and investigated. Finally, numerical studies with randomly generated instances are conducted to assess the performance of the proposed algorithms.  相似文献   

9.
A single machine scheduling problem is studied. There is a partition of the set of n jobs into g groups on the basis of group technology. Jobs of the same group are processed contiguously. A sequence independent setup time precedes the processing of each group. Two external renewable resources can be used to linearly compress setup and job processing times. The setup times are jointly compressible by one resource, the job processing times are jointly compressible by another resource and the level of the resource is the same for all setups and all jobs. Polynomial time algorithms are presented to find an optimal job sequence and resource values such that the total weighted resource consumption is minimum, subject to meeting job deadlines. The algorithms are based on solving linear programming problems with two variables by geometric techniques.  相似文献   

10.
Scheduling research has increasingly taken the concept of deterioration into consideration. In this paper, we study a single machine group scheduling problem with deterioration effect, where the jobs are already put into groups, before any optimization. We assume that the actual processing times of jobs are increasing functions of their starting times, i.e., the job processing times are described by a function which is proportional to a linear function of time. The setup times of groups are assumed to be fixed and known. For some special cases of minimizing the makespan with ready times of the jobs, we show that the problem can be solved in polynomial time for the proposed model. For the general case, a heuristic algorithm is proposed, and the computational experiments show that the performance of the heuristic is fairly accurately in obtaining near-optimal solutions. The results imply that the average percentage error of the proposed heuristic algorithm from optimal solutions is less than 3%.  相似文献   

11.
The paper deals with single machine scheduling problems with setup time considerations where the actual processing time of a job is not only a non-decreasing function of the total normal processing times of the jobs already processed, but also a non-increasing function of the job’s position in the sequence. The setup times are proportional to the length of the already processed jobs, i.e., the setup times are past-sequence-dependent (p-s-d). We consider the following objective functions: the makespan, the total completion time, the sum of the δth (δ ≥ 0) power of job completion times, the total weighted completion time and the maximum lateness. We show that the makespan minimization problem, the total completion time minimization problem and the sum of the δ th (δ ≥ 0) power of job completion times minimization problem can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

12.
In this study, we consider scheduling problems with convex resource dependent processing times and deteriorating jobs, in which the processing time of a job is a function of its starting time and its convex resource allocation. The objective is to find the optimal sequence of jobs and the optimal convex resource allocation separately. This paper focus on the single-machine problems with objectives of minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost, and a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. It shows that the problems remain polynomially solvable under the proposed model.  相似文献   

13.
In the paper two resource constrained single-machine group scheduling problems with time and position dependent processing times are considered. By time and position dependent processing times and group technology assumption, we mean that the processing time of a job is defined by the function of its starting time and position in the group, and the group setup times of a group is a positive strictly decreasing continuous function of the amount of consumed resource. We present polynomial solutions for the makespan minimization problem under the constraint that the total resource consumption does not exceed a given limit, and the total resource consumption minimization problem under the constraint that the makespan does not exceed a given limit, respectively.  相似文献   

14.
工件带强制工期,指工件必须在已给定的工期内完工,不得延迟.这种环境在实际应用中随处可见.如果工件过早提前完工,意味着工件还需要保管,将会产生额外费用.本文讨论了在单机上,加工带准备时间与强制工期的n个可中断工件,在机器可空闲条件下,确定一个工件排序,使得提前完工时间和最小.先考虑了问题的复杂性,通过奇偶划分问题归约,证明了其是NP-complete的.而后,讨论了加工时间相等的特殊情形,由于工件不允许延迟,问题可能会无可行排序,因此提出了—个多项式时间算法,既能判定可行性,又能针对可行问题获得最优排序.  相似文献   

15.
In this paper we study the job shop scheduling problem under the assumption that the jobs have controllable processing times. The fact that the jobs have controllable processing times means that it is possible to reduce the processing time of the jobs by paying a certain cost. We consider two models of controllable processing times: continuous and discrete. For both models we present polynomial time approximation schemes when the number of machines and the number of operations per job are fixed.  相似文献   

16.
We consider the single machine scheduling problem with resource dependent release times and processing times, in which both the release times and processing times are strictly linear decreasing functions of the amount of resources consumed. The objective is to minimize the makespan plus the total resource consumption costs. We propose a heuristic algorithm for the general problem by utilizing some derived optimal properties and analyze its performance bound. For some special cases, we propose another heuristic algorithm that achieves a tighter performance bound.  相似文献   

17.
We consider a scheduling problem with two identical parallel machines and n jobs. For each job we are given its release date when job becomes available for processing. All jobs have equal processing times. Preemptions are allowed. There are precedence constraints between jobs which are given by a (di)graph consisting of a set of outtrees and a number of isolated vertices. The objective is to find a schedule minimizing mean flow time. We suggest an O(n2) algorithm to solve this problem.The suggested algorithm also can be used to solve the related two-machine open shop problem with integer release dates, unit processing times and analogous precedence constraints.  相似文献   

18.
In this paper, we consider single machine scheduling problem in which job processing times are controllable variables with linear costs. We concentrate on two goals separately, namely, minimizing a cost function containing total completion time, total absolute differences in completion times and total compression cost; minimizing a cost function containing total waiting time, total absolute differences in waiting times and total compression cost. The problem is modelled as an assignment problem, and thus can be solved with the well-known algorithms. For the case where all the jobs have a common difference between normal and crash processing time and an equal unit compression penalty, we present an O(n log n) algorithm to obtain the optimal solution.  相似文献   

19.
This paper presents a fuzzy-neural approach for constraint satisfaction of a generalized job shop scheduling problem (GJSSP) fuzzy processing times. Our study is an extension of recently developed research in a GJSSP where the processing time of operations was constant. Our paper assumes that the processing time of jobs is uncertain. The proposed fuzzy-neural approach can be adaptively adjusted with weights of connections based on sequence resource and uncertain processing time constraints of the GJSSP during its processing. The computational results show that the proposed neural approach is able to find good solutions in reasonable time.  相似文献   

20.
Machine scheduling with resource dependent processing times   总被引:1,自引:0,他引:1  
We consider machine scheduling on unrelated parallel machines with the objective to minimize the schedule makespan. We assume that, in addition to its machine dependence, the processing time of any job is dependent on the usage of a discrete renewable resource, e.g. workers. A given amount of that resource can be distributed over the jobs in process at any time, and the more of that resource is allocated to a job, the smaller is its processing time. This model generalizes the classical unrelated parallel machine scheduling problem by adding a time-resource tradeoff. It is also a natural variant of a generalized assignment problem studied previously by Shmoys and Tardos. On the basis of an integer linear programming formulation for a relaxation of the problem, we use LP rounding techniques to allocate resources to jobs, and to assign jobs to machines. Combined with Graham’s list scheduling, we show how to derive a 4-approximation algorithm. We also show how to tune our approach to yield a 3.75-approximation algorithm. This is achieved by applying the same rounding technique to a slightly modified linear programming relaxation, and by using a more sophisticated scheduling algorithm that is inspired by the harmonic algorithm for bin packing. We finally derive inapproximability results for two special cases, and discuss tightness of the integer linear programming relaxations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号