首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Given items with short life cycles or seasonal demands, one can potentially improve profits by producing during the selling season, especially when its production capacity is substantial. We develop a two-stage, multi-item model incorporating reactive production that employs a firm’s internal capacity. Production occurs in an uncapacitated preseason stage and a capacitated reactive stage. Demands occur in the reactive stage. Reactive capacities are pre-allocated to each item in the preseason stage and cannot be changed during the reactive stage. Reactive production occurs during the selling season with full knowledge of demands. The objective is expected profit maximization. Unsatisfied demand is lost. The revenue, salvage value, and production and lost sales costs are proportional. Assuming no fixed costs, we present a simple algorithm for computing optimal policies. For a model with fixed costs for allocating preseason stage production and reactive stage capacity to product families, we characterize optimal policies and develop optimal and heuristic algorithms.  相似文献   

2.
Consider the inventory placement problem in an N-stage supply system facing a stochastic demand for a single planning period. Each stage is a stocking point holding some form of inventory (e.g., raw materials, subassemblies, product returns or finished products) that after a suitable transformation can satisfy demand. Stocking decisions are made before demand occurs. Unsatisfied demands are lost. The revenue, salvage value, ordering, transformation, and lost sales costs are proportional. There are fixed costs for utilizing stages for stock storage. The objective is to maximize the probability of achieving a given target profit level.  相似文献   

3.
Competitive retail environments are characterized by service levels and lost sales in case of excess demand. We contribute to research on lost-sales models with a service level criterion in multiple ways. First, we study the optimal replenishment policy for this type of inventory system as well as base-stock policies and (RsS) policies. Furthermore, we derive lower and upper bounds on the order-up-to level, and we propose efficient approximation procedures to determine the order-up-to level. The procedures find values of the inventory control variables that are close to the best (RsS) policy and comply to the service level restriction for most of the instances, with an average cost increase of 2.3% and 1.2% for the case without and with fixed order costs, respectively.  相似文献   

4.

In this paper, an inventory problem where the inventory cycle must be an integer multiple of a known basic period is considered. Furthermore, the demand rate in each basic period is a power time-dependent function. Shortages are allowed but, taking necessities or interests of the customers into account, only a fixed proportion of the demand during the stock-out period is satisfied with the arrival of the next replenishment. The costs related to the management of the inventory system are the ordering cost, the purchasing cost, the holding cost, the backordering cost and the lost sale cost. The problem is to determine the best inventory policy that maximizes the profit per unit time, which is the difference between the income obtained from the sales of the product and the sum of the previous costs. The modeling of the inventory problem leads to an integer nonlinear mathematical programming problem. To solve this problem, a new and efficient algorithm to calculate the optimal inventory cycle and the economic order quantity is proposed. Numerical examples are presented to illustrate how the algorithm works to determine the best inventory policies. A sensitivity analysis of the optimal policy with respect to some parameters of the inventory system is developed. Finally, conclusions and suggestions for future research lines are given.

  相似文献   

5.
In this paper, we consider a single product, periodic review, stochastic demand inventory problem where backorders are allowed and penalized via fixed and proportional backorder costs simultaneously. Fixed backorder cost associates a one-shot penalty with stockout situations whereas proportional backorder cost corresponds to a penalty for each demanded but yet waiting to be satisfied item. We discuss the optimality of a myopic base-stock policy for the infinite horizon case. Critical number of the infinite horizon myopic policy, i.e., the base-stock level, is denoted by S. If the initial inventory is below S then the optimal policy is myopic in general, i.e., regardless of the values of model parameters and demand density. Otherwise, the sufficient condition for a myopic optimum requires some restrictions on demand density or parameter values. However, this sufficient condition is not very restrictive, in the sense that it holds immediately for Erlang demand density family. We also show that the value of S can be computed easily for the case of Erlang demand. This special case is important since most real-life demand densities with coefficient of variation not exceeding unity can well be represented by an Erlang density. Thus, the myopic policy may be considered as an approximate solution, if the exact policy is intractable. Finally, we comment on a generalization of this study for the case of phase-type demands, and identify some related research problems which utilize the results presented here.  相似文献   

6.
This paper presents a stochastic inventory model for situations in which, during a stockout period, a fraction β of the demand is backordered and the remaining fraction 1 – β is lost. The model is suggested by the customers' different reactions to a stockout condition: during the stockout period, some patient customers wait until their demand is satisfied, while other impatient or urgent customers cannot wait and have to fill their demand from another source. The cost of a backorder is assumed to be proportional to the length of time for which the backorder exists, and a fixed penalty cost is incurred per unit of lost demand. Based on a heuristic treatment of a lot-size reorder-point policy, a mathematical model representing the average annual cost of operating the inventory system is developed. The optimal operating policy variables minimizing the average annual cost can be calculated iteratively. At the extremes β = 1 and β = 0, the model presented reduces to the usual backorders and lost sales case, respectively.  相似文献   

7.
We consider the joint pricing and inventory control problem for a single product over a finite horizon and with periodic review. The demand distribution in each period is determined by an exogenous Markov chain. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. The surplus costs as well as fixed and variable costs are state dependent. We show the existence of an optimal (sSp)-type feedback policy for the additive demand model. We extend the model to the case of emergency orders. We compute the optimal policy for a class of Markovian demand and illustrate the benefits of dynamic pricing over fixed pricing through numerical examples. The results indicate that it is more beneficial to implement dynamic pricing in a Markovian demand environment with a high fixed ordering cost or with high demand variability.  相似文献   

8.
In this paper, an extended economic production quantity (EPQ) model is investigated, where demand follows a random process. This study is motivated by an industrial case for precision machine assembly in the machinery industry. Both a positive resetup point s and a fixed lot size Q are implemented in this production control policy. To cope with random demand, a resetup point, i.e., the lowest inventory level to start the production, is adapted to minimize stock shortage during the replenishment cycle. The considered cost includes setup cost, inventory carrying cost, and shortage cost, where shortage may occur at the production stage and/or at the end of one replenishment cycle. Under some mild conditions, the expected cost per unit time can be shown to be convex with respect to decision parameters s and Q. Further computational study has demonstrated that the proposed model outperforms the classical EPQ when demand is random. In particular, a positive resetup point contributes to a significant portion of this cost savings when compared with that in the classical lot sizing policy.  相似文献   

9.
Whenever demand for a single item can be categorised into classes of different priority, an inventory rationing policy should be considered. In this paper we analyse a continuous review (s, Q) model with lost sales and two demand classes. A so-called critical level policy is applied to ration the inventory among the two demand classes. With this policy, low-priority demand is rejected in anticipation of future high-priority demand whenever the inventory level is at or below a prespecified critical level. For Poisson demand and deterministic lead times, we present an exact formulation of the average inventory cost. A simple optimisation procedure is presented, and in a numerical study we compare the optimal rationing policy with a policy where no distinction between the demand classes is made. The benefit of the rationing policy is investigated for various cases and the results show that significant cost reductions can be obtained.  相似文献   

10.
This paper addresses the single-item, non-stationary stochastic demand inventory control problem under the non-stationary (R, S) policy. In non-stationary (R, S) policies two sets of control parameters—the review intervals, which are not necessarily equal, and the order-up-to-levels for replenishment periods—are fixed at the beginning of the planning horizon to minimize the expected total cost. It is assumed that the total cost is comprised of fixed ordering costs and proportional direct item, inventory holding and shortage costs. With the common assumption that the actual demand per period is a normally distributed random variable about some forecast value, a certainty equivalent mixed integer linear programming model is developed for computing policy parameters. The model is obtained by means of a piecewise linear approximation to the non-linear terms in the cost function. Numerical examples are provided.  相似文献   

11.
In recent years multi-channel retail systems have received increasing interest. Partly due to growing online business that serves as a second sales channel for many firms, offering channel specific prices has become a common form of revenue management. We analyze conditions for known inventory control policies to be optimal in presence of two different sales channels. We propose a single item lost sales model with a lead time of zero, periodic review and nonlinear non-stationary cost components without rationing to realistically represent a typical web-based retail scenario. We analyze three variants of the model with different arrival processes: demand not following any particular distribution, Poisson distributed demand and a batch arrival process where demand follows a Pòlya frequency type distribution. We show that without further assumptions on the arrival process, relatively strict conditions must be imposed on the penalty cost in order to achieve optimality of the base stock policy. We also show that for a Poisson arrival process with fixed ordering costs the model with two sales channels can be transformed into the well known model with a single channel where mild conditions yield optimality of an (sS) policy. Conditions for optimality of the base stock and (sS) policy for the batch arrival process with and without fixed ordering costs, respectively, are presented together with a proof that the batch arrival process provides valid upper and lower bounds for the optimal value function.  相似文献   

12.
We study an inventory system where demand on the stockout period is partially backlogged. The backlogged demand ratio is a mixture of two exponential functions. The shortage cost has two significant costs: the unit backorder cost (which includes a fixed cost and a cost proportional to the length of time for which the backorder exists) and the cost of lost sales. A general procedure to determine the optimal policy and the minimum inventory cost for all the parameter values is developed. This model generalizes several inventory systems analyzed by different authors. Numerical examples are used to illustrate the theoretical results.  相似文献   

13.
We analyze an inventory system with a mixture of backorders and lost sales, where the backordered demand rate is an exponential function of time the customers wait before receiving the item. Stockout costs (backorder cost and lost sales cost) include a fixed cost and a cost proportional to the length of the shortage period. A procedure for determining the optimal policy and the maximum inventory profit is presented. This work extends several inventory models of the existing literature.  相似文献   

14.
In this paper, we consider a deterministic nested substitution problem where there are multiple products which can be substituted one for the other, if necessary, at a certain cost. We consider the case when there are n products, and product j can substitute products j + 1,…,n at certain costs. The trade-off is the cost of storing products (for example, customised products) at a higher inventory holding stage versus the cost of transferring downwards from a lower inventory holding cost (generic product) stage. The standard approach to solving the problem yields an intractable formulation, but by reformulating the problem to determine the optimal run-out times, we are able to determine the optimal order and substitution quantities. Numerical examples showing the effect of various system parameters on the optimal order and substitution policy are also presented.  相似文献   

15.
A k-product uncapacitated facility location problem can be described as follows. There is a set of demand points where clients are located and a set of potential sites where facilities of unlimited capacities can be set up. There are k different kinds of products. Each client needs to be supplied with k kinds of products by a set of k different facilities and each facility can be set up to supply only a distinct product with a non-negative fixed cost determined by the product it intends to supply. There is a non-negative cost of shipping goods between each pair of locations. These costs are assumed to be symmetric and satisfy the triangle inequality. The problem is to select a set of facilities to be set up and their designated products and to find an assignment for each client to a set of k   facilities so that the sum of the setup costs and the shipping costs is minimized. In this paper, an approximation algorithm within a factor of 2k+12k+1 of the optimum cost is presented. Assuming that fixed setup costs are zero, we give a 2k-12k-1 approximation algorithm for the problem. In addition we show that for the case k=2k=2, the problem is NP-complete when the cost structure is general and there is a 2-approximation algorithm when the costs are symmetric and satisfy the triangle inequality. The algorithm is shown to produce an optimal solution if the 2-product uncapacitated facility location problem with no fixed costs happens to fall on a tree graph.  相似文献   

16.
17.
We consider a multi-item two-echelon spare part inventory system in which the central warehouse operates under an (nQ,?R) policy and the local warehouses implement order-up-to S policy, each facing a compound Poisson demand. The objective is to find the policy parameters minimizing expected system-wide inventory holding and fixed ordering costs subject to an aggregate mean response time constraint at each warehouse. In this paper, we propose four alternative approximations for the steady state performance of the system; and extend a heuristic and a lower bound proposed under Poisson demand assumption to the compound Poisson setting. In a computational study, we show that the performances of the approximations, the heuristic, and the lower bound are quite satisfactory; and the relative cost saving of setting an aggregate service level rather than individually for each part is quite high.  相似文献   

18.
We investigate the value of accounting for demand seasonality in inventory control. Our problem is motivated by discussions with retailers who admitted to not taking perceived seasonality patterns into account in their replenishment systems. We consider a single-location, single-item periodic review lost sales inventory problem with seasonal demand in a retail environment. Customer demand has seasonality with a known season length, the lead time is shorter than the review period and orders are placed as multiples of a fixed batch size. The cost structure comprises of a fixed cost per order, a cost per batch, and a unit variable cost to model retail handling costs. We consider four different settings which differ in the degree of demand seasonality that is incorporated in the model: with or without within-review period variations and with or without across-review periods variations. In each case, we calculate the policy which minimizes the long-run average cost and compute the optimality gaps of the policies which ignore part or all demand seasonality. We find that not accounting for demand seasonality can lead to substantial optimality gaps, yet incorporating only some form of demand seasonality does not always lead to cost savings. We apply the problem to a real life setting, using Point-of-Sales data from a European retailer. We show that a simple distinction between weekday and weekend sales can lead to major cost reductions without greatly increasing the complexity of the retailer’s automatic store ordering system. Our analysis provides valuable insights on the tradeoff between the complexity of the automatic store ordering system and the benefits of incorporating demand seasonality.  相似文献   

19.
In this paper, we study the inventory system of an online retailer with compound Poisson demand. The retailer normally replenishes its inventory according to a continuous review (nQR) policy with a constant lead time. Usually demands that cannot be satisfied immediately are backordered. We also assume that the customers will accept a reasonable waiting time after they have placed their orders because of the purchasing convenience of the online system. This means that a sufficiently short waiting time incurs no shortage costs. We call this allowed waiting time “committed service time”. After this committed service time, if the retailer is still in shortage, the customer demand must either be satisfied with an emergency supply that takes no time (which is financially equivalent to a lost sale) or continue to be backordered with a time-dependent backorder cost. The committed service time gives an online retailer a buffer period to handle excess demands. Based on real-time information concerning the outstanding orders of an online retailer and the waiting times of its customers, we provide a decision rule for emergency orders that minimizes the expected costs under the assumption that no further emergency orders will occur. This decision rule is then used repeatedly as a heuristic. Numerical examples are presented to illustrate the model, together with a discussion of the conditions under which the real-time decision rule provides considerable cost savings compared to traditional systems.  相似文献   

20.
This paper studies a economic lot sizing (ELS) problem with both upper and lower inventory bounds. Bounded ELS models address inventory control problems with time-varying inventory capacity and safety stock constraints. An O(n2) algorithm is found by using net cumulative demand (NCD) to measure the amount of replenishment requested to fulfill the cumulative demand till the end of the planning horizon. An O(n) algorithm is found for the special case, the bounded ELS problem with non-increasing marginal production cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号