首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Solving large-scale p-median problems is usually time consuming. People often aggregate the demand points in a large-scale p-median problem to reduce its problem size and make it easier to solve. Most traditional research on demand point aggregation is either experimental or assuming uniformly distributed demand points in analytical studies. In this paper, we study demand point aggregation for planar p-median problem when demand points are arbitrarily distributed. Efficient demand aggregation approaches are proposed with the corresponding attainable worst-case aggregation error bounds measured. We demonstrate that these demand aggregation approaches introduce smaller worst-case aggregation error bounds than that of the honeycomb heuristic [Papadimitriou, C.H., 1981. Worst-case and probabilistic analysis of a geometric location problem. SIAM Journal on Computing 10, 542–557] when demand points are arbitrarily distributed. We also conduct numerical experiments to show their effectiveness.  相似文献   

2.
In this paper we propose a new model for the p-median problem. In the standard p-median problem it is assumed that each demand point is served by the closest facility. In many situations (for example, when demand points are communities of customers and each customer makes his own selection of the facility) demand is divided among the facilities. Each customer selects a facility which is not necessarily the closest one. In the gravity p-median problem it is assumed that customers divide their patronage among the facilities with the probability that a customer patronizes a facility being proportional to the attractiveness of that facility and to a decreasing utility function of the distance to the facility.  相似文献   

3.
4.
The p-median problem is one of the basic models in discrete location theory. As with most location problems, it is classified as NP-hard, and so, heuristic methods are usually used to solve it. Metaheuristics are frameworks for building heuristics. In this survey, we examine the p-median, with the aim of providing an overview on advances in solving it using recent procedures based on metaheuristic rules.  相似文献   

5.
The solutions to the fuzzy p-median problem make it possible to leave part of the demand uncovered in order to obtain significant reductions in costs. Moreover, the fuzzy formulation provides the decision-maker with many flexible solutions that he or she may prefer to the classical crisp solution. We introduce some marginal analysis techniques to study how solutions depend on membership functions. Taking into account the internal structure of the problem, we propose a practical criterion to fix the tolerances for the uncovered demand, which happens to be the most sensitive aspect of the fuzzy p-median.  相似文献   

6.
A new heuristic algorithm is proposed for the P-median problem. The heuristic restricts the size of the state space of a dynamic programming algorithm. The approach may be viewed as an extension of the myopic or greedy adding algorithm for the P-median model. The approach allows planners to identify a large number of solutions all of which perform well with respect to the P-median objective of minimizing the demand weighted average distance between customer locations and the nearest of the P selected facilities. In addition, the results indicate regions in which it is desirable to locate facilities. Computational results from three test problems are discussed.  相似文献   

7.
Given n points in \mathbbRd{\mathbb{R}^d} with nonnegative weights, the inverse 1-median problem with variable coordinates consists in changing the coordinates of the given points at minimum cost such that a prespecified point in \mathbbRd{\mathbb{R}^d} becomes the 1-median. The cost is proportional to the increase or decrease of the corresponding point coordinate. If the distances between points are measured by the rectilinear norm, the inverse 1-median problem is NP{\mathcal{NP}}-hard, but it can be solved in pseudo-polynomial time. Moreover, a fully polynomial time approximation scheme exists in this case. If the point weights are assumed to be equal, the corresponding inverse problem can be reduced to d continuous knapsack problems and is therefore solvable in O(nd) time. In case that the squared Euclidean norm is used, we derive another efficient combinatorial algorithm which solves the problem in O(nd) time. It is also shown that the inverse 1-median problem endowed with the Chebyshev norm in the plane is NP{\mathcal{NP}}-hard. Another pseudo-polynomial algorithm is developed for this case, but it is shown that no fully polynomial time approximation scheme does exist.  相似文献   

8.
The aim of this paper is to solve p-median problems with an additional coverage constraint. These problems arise in location applications, when the trade-off between distance and coverage is being calculated. Three kinds of heuristic algorithms are developed. First, local search procedures are designed both for constructing and improving feasible solutions. Second, a multistart GRASP heuristic is developed, based on the previous local search methods. Third, by employing Lagrangean relaxation methods, a very efficient Lagrangean heuristic algorithm is designed, which extends the well known algorithm of Handler and Zang, for constrained shortest path problems, to constrained p-median problems. Finally, a comparison of the computational efficiency of the developed methods is made between a variety of problems of different sizes.  相似文献   

9.
The p-hub center problem is to locate p hubs and to allocate non-hub nodes to hub nodes such that the maximum travel time (or distance) between any origin–destination pair is minimized. We address the p-hub center allocation problem, a subproblem of the location problem, where hub locations are given. We present complexity results and IP formulations for several versions of the problem. We establish that some special cases are polynomially solvable.  相似文献   

10.
The p-median model is used to locate P centers to serve a geographically distributed population. A cornerstone of such a model is the measure of distance between a service center and demand points, i.e. the location of the population (customers, pupils, patients, and so on). Evidence supports the current practice of using Euclidean distance. However, we find that the location of multiple hospitals in a rural region of Sweden with a non-symmetrically distributed population is quite sensitive to distance measure, and somewhat sensitive to spatial aggregation of demand points.  相似文献   

11.
Facility-location problems have several applications, such as telecommunications, industrial transportation and distribution. One of the most well-known facility-location problems is the p-median problem. This work addresses an application of the capacitated p-median problem to a real-world problem. We propose a genetic algorithm (GA) to solve the capacitated p-median problem. The proposed GA uses not only conventional genetic operators, but also a new heuristic “hypermutation” operator suggested in this work. The proposed GA is compared with a tabu search algorithm.  相似文献   

12.
In this paper we study the quadratic bottleneck knapsack problem (QBKP) from an algorithmic point of view. QBKP is shown to be NP-hard and it does not admit polynomial time ?-approximation algorithms for any ?>0 (unless P=NP). We then provide exact and heuristic algorithms to solve the problem and also identify polynomially solvable special cases. Results of extensive computational experiments are reported which show that our algorithms can solve QBKP of reasonably large size and produce good quality solutions very quickly. Several variations of QBKP are also discussed.  相似文献   

13.
This paper deals with glass cutting in an Italian plant producing parts for the automotive market. Glass cutting is basically organised in two phases: first, large rectangular sheets of the same type are obtained from a ribbon of flat glass and sent to warehouse; then, sheets of various types are taken from the warehouse and cut into small rectangular parts of various sizes according to demand. In both phases, trim loss is generated. A problem then arises of fulfilling the demand of small parts using a limited assortment of large sheets and minimizing the total trim loss. In this paper we describe a heuristic algorithm based on a p-median model with additional constraints that take into account all the relevant shop floor requirements. A computational study conducted on real instances provided by the plant is presented and discussed.  相似文献   

14.
Assigning multiple service facilities to demand points is important when demand points are required to withstand service facility failures. Such failures may result from a multitude of causes, ranging from technical difficulties to natural disasters. The α-neighbor p-center problem deals with locating p service facilities. Each demand point is assigned to its nearest α service facilities, thus it is able to withstand up to α − 1 service facility failures. The objective is to minimize the maximum distance between a demand point and its αth nearest service facility. We present two optimal algorithms for both the continuous and discrete α-neighbor p-center problem. We present experimental results comparing the performance of the two optimal algorithms for α = 2. We also present experimental results showing the performance of the relaxation algorithm for α = 1, 2, 3.  相似文献   

15.
In this paper, we consider the capacitated multi-facility Weber problem with rectilinear distance. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the rectilinear distance separating them. We first give a new mixed integer linear programming formulation of the problem by making use of a well-known necessary condition for the optimal facility locations. We then propose new heuristic solution methods based on this formulation. Computational results on benchmark instances indicate that the new methods can provide very good solutions within a reasonable amount of computation time.  相似文献   

16.
In the capacitated p-median problem (CPMP), a set of n customers is to be partitioned into p disjoint clusters, such that the total dissimilarity within each cluster is minimized subject to constraints on maximum cluster capacity. Dissimilarity of a cluster is the sum of the dissimilarities between each customer who belongs to the cluster and the median associated with the cluster. An effective variable neighbourhood search heuristic for this problem is proposed. The heuristic is characterized by the use of easily computed lower bounds to assess whether undertaking computationally expensive calculation of the worth of moves, within the neighbourhood search, is necessary. The small proportion of moves that need to be assessed fully are then evaluated by an exact solution of a relatively small subproblem. Computational results on five standard sets of benchmark problem instances show that the heuristic finds all the best-known solutions. For one instance, the previously best-known solution is improved, if only marginally.  相似文献   

17.
We develop a unified error bound theory to compare a given p-median, p-center or covering location model with continuously distributed demand points in R n to a corresponding given original model of the same type having a finite collection of demand points in R n . We give ways to construct either a continuous or finite demand point model from the other model and also control the error bound. Our work uses Voronoi tilings extensively, and is related to earlier error bound theory for aggregating finitely many demand points.  相似文献   

18.
We consider the variant of the tree p-median problem where each node must be connected to the two closest centers. This problem is polynomially solved through a dynamic programming formulation that extends the solution given by A. Tamir for the classicalp-median problem on a tree.  相似文献   

19.
In this paper, we study traveling salesperson (TSP) and bottleneck traveling salesperson (BTSP) problems on special graphs called Halin graphs. Although both problems are NP-Hard on general graphs, they are polynomially solvable on Halin graphs. We address the multiobjective versions of these problems. We show computational complexities of finding a single nondominated point as well as finding all nondominated points for different objective function combinations. We develop algorithms for the polynomially solvable combinations.  相似文献   

20.
Frank Plastria 《TOP》2001,9(2):217-242
In large scale location-allocation studies it is necessary to use data-aggregation in order to obtain solvable models. A detailed analysis is given of the errors induced by this aggregation in the evaluation of thep-median objective function. Then it is studied how to choose the points at which to aggregate given groups of demand points so as to minimise this aggregation error. Forp-median problems with euclidean distances, arguments are given in favour of the centre of gravity of the groups. These arguments turn out to be much stronger for rectangular distance. Aggregating at the centroid also leads to much higher precision bounds on the errors for rectangular distance. Some numerical results are obtained validating the theoretical developments. This research was partially done while the author was on visit at the Laboratoire d’Analyse Appliquée et Optimisation at the Université de Bourgogne, Dijon, France. Thanks to E. Carrizosa, B. Rayco and four anonymous referees for many thoughtful remarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号