首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 384 毫秒
1.
In this article, a Timoshenko beam with tip body and boundary damping is considered. A linearized three-level difference scheme of the Timoshenko beam equations on uniform meshes is derived by the method of reduction of order. The unique solvability, unconditional stability and convergence of the difference scheme are proved. The convergence order in maximum norm is of order two in both space and time. A numerical example is presented to demonstrate the theoretical results.  相似文献   

2.
This paper develops and analyzes a moving mesh finite difference method for solving partial integro-differential equations. First, the time-dependent mapping of the coordinate transformation is approximated by a a piecewise linear function in time. Then, piecewise quadratic polynomial in space and an efficient method to discretize the memory term of the equation is designed using the moving mesh approach. In each time slice, a simple piecewise constant approximation of the integrand is used, and thus a quadrature is constructed for the memory term. The central finite difference scheme for space and the backward Euler scheme for time are used. The paper proves that the accumulation of the quadrature error is uniformly bounded and that the convergence of the method is second order in space and first order in time. Numerical experiments are carried out to confirm the theoretical predictions.  相似文献   

3.
This paper designs a hybrid scheme based on finite difference methods and a spectral method for the time-dependent Wigner equation,and gives the error analysis for the full discret ization of its initial value problem.An explicit-implicit time-splitting scheme is used for time integration and the second-order upwind finite difference scheme is used to dis-cretize the advection term.The consistence error and the stability of the full discretization are analyzed.A Fourier spectral method is used to approximate the pseudo-differential operator term and the corresponding error is studied in detail.The final convergence result shows clearly how the regularity of the solution affects the convergence order of the pro-posed scheme.N umerical results are presented for confirming the sharpness of the analysis.The scattering effects of a Gaussian wave packet tunneling through a Gaussian potential barrier are investigated.The evolution of the density function shows that a larger portion of the wave is reflected when the height and the width of the barrier increase.Mathematics subject classification:65M06,65M70.  相似文献   

4.
A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.  相似文献   

5.
In this paper, a space fractional differential equation is considered. The equation is obtained from the parabolic equation containing advection, diffusion and reaction terms by replacing the second order derivative in space by a fractional derivative in space of order. An implicit finite difference approximation for this equation is presented. The stability and convergence of the finite difference approximation are proved. A fractional-order method of lines is also presented. Finally, some numerical results are given.  相似文献   

6.
Long-time asymptotic stability and convergence properties for the numerical solution of a Volterra equation of parabolic type are studied.The methods are based on the first-second order backward difference methods.The memory term is approximated by the comvolution quadrature and the interpolant quadrature.Discretization of the spatial partial differential operators by the finite element method is also considered.  相似文献   

7.
Several new energy identities of the two dimensional(2D) Maxwell equations in a lossy medium in the case of the perfectly electric conducting boundary conditions are proposed and proved.These identities show a new kind of energy conservation in the Maxwell system and provide a new energy method to analyze the alternating direction implicit finite difference time domain method for the 2D Maxwell equations(2D-ADI-FDTD).It is proved that 2D-ADI-FDTD is approximately energy conserved,unconditionally stable and second order convergent in the discrete L2 and H1 norms,which implies that 2D-ADI-FDTD is super convergent.By this super convergence,it is simply proved that the error of the divergence of the solution of 2D-ADI-FDTD is second order accurate.It is also proved that the difference scheme of 2D-ADI-FDTD with respect to time t is second order convergent in the discrete H1 norm.Experimental results to confirm the theoretical analysis on stability,convergence and energy conservation are presented.  相似文献   

8.
A new convergence theorem for the Secant method in Banach spaces based on new recurrence relations is established for approximating a solution of a nonlinear operator equation. It is assumed that the divided difference of order one of the nonlinear operator is Lipschitz continuous. The convergence conditions differ from some existing ones and are easily satisfied. The results of the paper are justified by numerical examples that cannot be handled by earlier works.  相似文献   

9.
A new convergence theorem for the Secant method in Banach spaces based on new recurrence relations is established for approximating a solution of a nonlinear operator equation.It is assumed that the divided difference of order one of the nonlinear operator is Lipschitz continuous.The convergence conditions differ from some existing ones and are easily satisfied.The results of the paper are justified by numerical examples that cannot be handled by earlier works.  相似文献   

10.
Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.  相似文献   

11.
In this paper we present a multistep difference scheme for the problem of miscible displacement of incompressible fluid flow in porous media. The discretization involves a three-level time scheme based on the characteristic method and a five-point finite difference scheme for space discretization. We prove that the convergence is of order O(h2+(Δt)2), which is in contrast to the convergence of order O(ht) proved for a singlestep characteristic with the same space discretization. Numerical experiments demonstrate the stability and second-order convergence of the scheme.  相似文献   

12.
In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2???α ), 0?<?α?<?1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2???α ?+?h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.  相似文献   

13.
Implicit difference schemes of O(k4 + k2h2 + h4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.  相似文献   

14.
In this paper, alternating direction implicit compact finite difference schemes are devised for the numerical solution of two-dimensional Schrödinger equations. The convergence rates of the present schemes are of order O(h4+τ2). Numerical experiments show that these schemes preserve the conservation laws of charge and energy and achieve the expected convergence rates. Representative simulations show that the proposed schemes are applicable to problems of engineering interest and competitive when compared to other existing procedures.  相似文献   

15.
Several new energy identities of the two dimensional(2D) Maxwell equations in a lossy medium in the case of the perfectly electric conducting boundary conditions are proposed and proved. These identities show a new kind of energy conservation in the Maxwell system and provide a new energy method to analyze the alternating direction implicit finite difference time domain method for the 2D Maxwell equations (2D-ADI-FDTD). It is proved that 2D-ADI-FDTD is approximately energy conserved, unconditionally stable and second order convergent in the discrete L2 and H1 norms, which implies that 2D-ADI-FDTD is super convergent. By this super convergence, it is simply proved that the error of the divergence of the solution of 2D-ADI-FDTD is second order accurate. It is also proved that the difference scheme of 2D-ADI-FDTD with respect to time t is second order convergent in the discrete H1 norm. Experimental results to confirm the theoretical analysis on stability, convergence and energy conservation are presented.  相似文献   

16.
Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dimensions(2D or 3D).We here propose and analyze finite difference methods for solving the coupled GrossPitaevskii equations in two dimensions,which models the two-component Bose-Einstein condensates with an internal atomic Josephson junction.The methods which we considered include two conservative type schemes and two non-conservative type schemes.Discrete conservation laws and solvability of the schemes are analyzed.For the four proposed finite difference methods,we establish the optimal convergence rates for the error at the order of O(h~2+τ~2)in the l~∞-norm(i.e.,the point-wise error estimates)with the time stepτand the mesh size h.Besides the standard techniques of the energy method,the key techniques in the analysis is to use the cut-off function technique,transformation between the time and space direction and the method of order reduction.All the methods and results here are also valid and can be easily extended to the three-dimensional case.Finally,numerical results are reported to confirm our theoretical error estimates for the numerical methods.  相似文献   

17.
In this article, a compact finite difference scheme for the coupled nonlinear Schrödinger equations is studied. The scheme is proved to conserve the original conservative properties. Unconditional stability and convergence in maximum norm with order O(τ2 + h4) are also proved by the discrete energy method. Finally, numerical results are provided to verify the theoretical analysis.  相似文献   

18.
A numerical study is made for solving a class of time-dependent singularly perturbed convection–diffusion problems with retarded terms which often arise in computational neuroscience. To approximate the retarded terms, a Taylor’s series expansion has been used and the resulting time-dependent singularly perturbed differential equation is approximated using parameter-uniform numerical methods comprised of a standard implicit finite difference scheme to discretize in the temporal direction on a uniform mesh by means of Rothe’s method and a B-spline collocation method in the spatial direction on a piecewise-uniform mesh of Shishkin type. The method is shown to be accurate of order O(M−1 + N−2 ln3N), where M and N are the number of mesh points used in the temporal direction and in the spatial direction respectively. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations. Comparisons of the numerical solutions are performed with an upwind and midpoint upwind finite difference scheme on a piecewise-uniform mesh to demonstrate the efficiency of the method.  相似文献   

19.
In this paper, a new stabilized finite volume method is studied and developed for the stationary Navier-Stokes equations. This method is based on a local Gauss integration technique and uses the lowest equal order finite element pair P 1P 1 (linear functions). Stability and convergence of the optimal order in the H 1-norm for velocity and the L 2-norm for pressure are obtained. A new duality for the Navier-Stokes equations is introduced to establish the convergence of the optimal order in the L 2-norm for velocity. Moreover, superconvergence between the conforming mixed finite element solution and the finite volume solution using the same finite element pair is derived. Numerical results are shown to support the developed convergence theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号