首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
6连通图中的可收缩边   总被引:4,自引:0,他引:4  
袁旭东  苏健基 《数学进展》2004,33(4):441-446
Kriesell(2001年)猜想:如果κ连通图中任意两个相邻顶点的度的和至少是2[5κ/4]-1则图中有κ-可收缩边.本文证明每一个收缩临界6连通图中有两个相邻的度为6的顶点,由此推出该猜想对κ=6成立。  相似文献   

2.
张莲珠 《数学进展》2002,31(5):424-426
设G是一个图。G的最小度,连通度,控制数,独立控制数和独立数分别用δ,k,γ,i和α表示,图G是3-γ-临界的,如果γ=3,而且G增加任一条边所得的图的控制数为2.Sumner和Blitch猜想:任意连通的3-γ临界图满足i=3,本文证明了如果G是使α=k 1≤δ的连通3-γ-临界图,那么Sumner-Blitch猜想成立。  相似文献   

3.
最大临界2-边连通图的结构   总被引:3,自引:0,他引:3  
假若G是一个2-边连通图,但对G中任一点v,G\{v}不是2-边连通图,则称G为一个临界2-边连通图。具有最大边数的临界2-边连通图称为一个最大临界图。文[1]中,作者给出了p阶临界2-边连通图的边数的最大界f(p),列出了最大临界图结构的不同情况。并且他们猜测已经找出所有这类图。本文将证明他们的猜想是正确的。  相似文献   

4.
G 称为(n, k)-图, 如果对任一SÍ V(G) (|S|≤k)有k(G-S)=n-|S|, 其中k(G)表示G的连通度. Mader猜想当k≥3时K2k+2-(1-因子)是惟一的(2k, k)-图. M. Kriesell 解决了k = 3, 4的特殊情形. 对k≥5的一般情形, 证明了该猜想成立.  相似文献   

5.
K1,4-自由的模κ泛圈图   总被引:1,自引:0,他引:1  
阿勇嘎  孙志人  田丰  卫兵 《数学进展》2005,34(2):221-232
设G是2-连通的K1,4自由图.本文证明了当δ(G)≥κ 1时,G是模κ泛圈图.这一结果肯定了猜想2,继而也肯定了Thomassen猜想在2-连通图中的正确性.  相似文献   

6.
Fan和Raspaud 1994年提出如下猜想:任一无桥3正则图必有三个交为空集的完美匹配.本文证明了如下结果:若G是一个圈4-边连通的无桥3正则图,且存在G的一个完美匹配M1使得G—M1恰为4个奇圈的不交并,则存在图G的两个完美匹配M2和M3使得M1∩M2∩M3=Φ。  相似文献   

7.
分数k-因子临界图的条件   总被引:1,自引:0,他引:1  
李巧  刘岩 《运筹学杂志》2013,(4):123-130
设G是-个连通简单无向图,如果删去G的任意k个项点后的图有分数完美匹配,则称G是分数k-因子临界图.给出了G是分数k-因子临界图的韧度充分条件与度和充分条件,这些条件中的界是可达的,并给出G是分数k-因子临界图的一个关于分数匹配数的充分必要条件.  相似文献   

8.
不包含2K_2的图是指不包含一对独立边作为导出子图的图.Kriesell证明了所有4连通的无爪图的线图是哈密顿连通的.本文证明了如果图G不包含2K_2并且不同构与K_2,P_3和双星图,那么线图L(G)是哈密顿图,进一步应用由Ryjá(?)ek引入的闭包的概念,给出了直径不超过2的2连通无爪图是哈密顿图这个定理的新的证明方法.  相似文献   

9.
在文[1]中,M.L.Balinski和A.Russakoff猜测,分配多面体图G(P_n)是N(n)-连通的,这里是G(P_n)的正则度数。本文证明了这一猜想,得到G(P_n)的连通度等于N(n)。  相似文献   

10.
无自圈的极小2-棱-连通图构造已由[1]及[3]给出,最近朱必文又得到了临界2-棱-连通图的构造本文研究了极小2-棱-连通图与临界2-棱-连通图之间的转化关系,从而得到了由前者过渡到后者的一种方法。本文在极小2-棱-连通图构造的基础上首先研究了临界-极小2-棱-连通图的构造,由此得出临界2-棱-连通图的一种非常简洁的递归结  相似文献   

11.
An edge of a k-connected graph is said to be a k-contractible edge, if its contraction yields again a k-connected graph. A noncomplete k-connected graph possessing no k-contractible edges is called contraction critical k-connected. Recently, Kriesell proved that every contraction critical 7-connected graph has two distinct vertices of degree 7. And he guessed that there are two vertices of degree 7 at distance one or two. In this paper, we give a proof to his conjecture. The work partially supported by NNSF of China(Grant number: 10171022)  相似文献   

12.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. Let G be a contraction critical 5-connected graph, in this paper we show that G has at least ${\frac{1}{2}|G|}$ vertices of degree 5.  相似文献   

13.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. An edge of a k-connected graph is called trivially noncontractible if its two end vertices have a common neighbor of degree k. Ando [K. Ando, Trivially noncontractible edges in a contraction critically 5-connected graph, Discrete Math. 293 (2005) 61-72] proved that a contraction critical 5-connected graph on n vertices has at least n/2 trivially noncontractible edges. Li [Xiangjun Li, Some results about the contractible edge and the domination number of graphs, Guilin, Guangxi Normal University, 2006 (in Chinese)] improved the lower bound to n+1. In this paper, the bound is improved to the statement that any contraction critical 5-connected graph on n vertices has at least trivially noncontractible edges.  相似文献   

14.
Vertices of Degree 5 in a Contraction Critically 5-connected Graph   总被引:2,自引:0,他引:2  
An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. A k-connected graph with no k-contractible edge is said to be contraction critically k-connected. We prove that a contraction critically 5-connected graph on n vertices has at least n/5 vertices of degree 5. We also show that, for a graph G and an integer k greater than 4, there exists a contraction critically k-connected graph which has G as its induced subgraph.  相似文献   

15.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

16.
We prove that if graph on n vertices is minimally and contraction critically 5-connected, then it has 4n/7 vertices of degree 5. We also prove that if graph on n vertices is minimally and contraction critically 6-connected, then it has n/2 vertices of degree 6. Bibliography: 7 titles.  相似文献   

17.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected graph without k-contractible edge is said to be contraction critically k-connected. Y. Egawa and W. Mader, independently, showed that the minimum degree of a contraction critical k-connected graph is at most 5k4?1. Hence, the minimum degree of a contraction critical 8-connected graph is either 8 or 9. This paper shows that a graph G is a contraction critical 8-connected graph with minimum degree 9 if and only if G is the strong product of a contraction critical 4-connected graph H and K2.  相似文献   

18.
An edge of a k-connected graph is said to be k-removable (resp. k-contractible) if the removal (resp. the contraction ) of the edge results in a k-connected graph. A k-connected graph with neither k-removable edge nor k-contractible edge is said to be minimally contraction-critically k-connected. We show that around an edge whose both end vertices have degree greater than 5 of a minimally contraction-critically 5-connected graph, there exists one of two specified configurations. Using this fact, we prove that each minimally contraction-critically 5-connected graph on n vertices has at least vertices of degree 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号