首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
This paper presents an application of the vector-maximum research [4–8] to the sensitivity analysis of goal programming problems as several of the criterion function penalty weights are simultaneously and independently varied. A generalized goal programming capability is presented and a six-stage analytic procedure is described. The problem is generalized in the sense that the regular goal programming penalty weights can be expanded to intervals if desired. The solution procedure is new in that it depends upon an algorithm for the vector-maximum problem, criterion cone contraction procedures, and filtering techniques. Together they are able to generate and process all extreme points on the portion of the surface of the goal programming augmented feasible region corresponding to the interval penalty weights specified. In effect, the procedure and adapted algorithm of this paper delivers to goal programming an operational power of sensitivity analysis not previously available to users. A numerical example is provided in order to illustrate the computerized application of the total goal programming procedure outlined.  相似文献   

2.
Theoretical aspects of the programming problem of maximizing the minimum value of a set of linear functionals subject to linear constraints are explored. Solution strategies are discussed and an optimality condition is developed. An algorithm is also presented.This research was partially supported by the Management Research Center of the University of Wisconsin—Milwaukee.  相似文献   

3.
Editorial: Hierarchical and bilevel programming   总被引:1,自引:0,他引:1  
Approximately twenty years ago the modern interest for hierarchical programming was initiated by J. Bracken and J.M. McGill [9], [10]. The activities in the field have ever grown lively, both in terms of theoretical developments and terms of the diversity of the applications. The collection of seven papers in this issue covers a diverse number of topics and provides a good picture of recent research activities in the field of bilevel and hierarchical programming. The papers can be roughly divided into three categories; Linear bilevel programming is addressed in the first two papers by Gendreau et al and Moshirvaziri et al; The following three papers by Nicholls, Loridan & Morgan, and Kalashnikov & Kalashnikova are concerned with nonlinear bilevel programming; and, finally, Wen & Lin and Nagase & Aiyoshi address hierarchical decision making issues relating to both biobjective and bilevel programming.  相似文献   

4.
A decomposition algorithm using Lemke's method is proposed for the solution of quadratic programming problems having possibly unbounded feasible regions. The feasible region for each master program is a generalized simplex of minimal size. This property is maintained by a dropping procedure which does not affect the finiteness of the convergence. The details of the matrix transformations associated with an efficient implementation of the algorithm are given. Encouraging preliminary computational experience is presented.  相似文献   

5.
Multilevel programming is developed to solve the decentralized problem in which decision makers (DMs) are often arranged within a hierarchical administrative structure. The linear bilevel programming (BLP) problem, i.e., a special case of multilevel programming problems with a two level structure, is a set of nested linear optimization problems over polyhedral set of constraints. Two DMs are located at the different hierarchical levels, both controlling one set of decision variables independently, with different and perhaps conflicting objective functions. One of the interesting features of the linear BLP problem is that its solution may not be Paretooptimal. There may exist a feasible solution where one or both levels may increase their objective values without decreasing the objective value of any level. The result from such a system may be economically inadmissible. If the decision makers of the two levels are willing to find an efficient compromise solution, we propose a solution procedure which can generate effcient solutions, without finding the optimal solution in advance. When the near-optimal solution of the BLP problem is used as the reference point for finding the efficient solution, the result can be easily found during the decision process.  相似文献   

6.
《Optimization》2012,61(2):141-156
This paper studies a linear programming problem in measure spaces (LPM). Several results are obtained. First, the optimal value of LPM can be equal to the optimal value of the dual problem (DLPM), but the solution of DLPM may be not exist in its feasible region. Sccond, :he relations between the optimal solution of LPM and the extreme point of the feasible region of LPM are discussed. In order to investigate the conditions under which a feasible solution becomes an extremal point, the inequality constraint of LPM is transformed to an equality constraint. Third, the LPM can be reformulated to be a general capacity problem (GCAP) or a linear semi-infinite programming problem (LSIP = SIP), and under appropriate restrictioiis, the algorithm developed by the authors in [7] and [8] are applicable for developing an approximation scheme for the optimal solution of LPM  相似文献   

7.
A hybrid approach to discrete mathematical programming   总被引:9,自引:0,他引:9  
The dynamic programming and branch-and-bound approaches are combined to produce a hybrid algorithm for separable discrete mathematical programs. Linear programming is used in a novel way to compute bounds. Every simplex pivot permits a bounding test to be made on every active node in the search tree. Computational experience is reported.  相似文献   

8.
The procedure samples the efficient set by computing the nondominated criterion vector that is closest to an ideal criterion vector according to a randomly weighted Tchebycheff metric. Using ‘filtering’ techniques, maximally dispersed representatives of smaller and smaller subsets of the set of nondominated criterion vectors are presented at each iteration. The procedure has the advantage that it can converge to non-extreme final solutions. Especially suitable for multiple objective linear programming, the procedure is also applicable to integer and nonlinear multiple objective programs.  相似文献   

9.
《Optimization》2012,61(2):93-103
Sufficient optimality conditions and duality results for a class of minmax programming problems are obtained under V-invexity type assumptions on objective and constraint functions. Applications of these results to certain fractional and generalized fractional programming problems are also presented  相似文献   

10.
Two examples of parametric cost programming problems—one in network programming and one in NP-hard 0-1 programming—are given; in each case, the number of breakpoints in the optimal cost curve is exponential in the square root of the number of variables in the problem. This research is partially supported by the Air Force Office of Scientic Research. Air Force Number AFOSR-78-3646  相似文献   

11.
This paper investigates the computation of transient-optimal policies in discrete dynamic programming. The model, is quite general: it may contain transient as well as nontransient policies. and the transition matrices are not necessarily substochastic. A functional equation for the so-called transient-value-vector is derived and the concept of superharmonicity is introduced. This concept provides the linear program to compute the transientvalue-vector and a transient-optimal policy. We also discuss the elimination of suboptimal actions, the solution of problems with additional constraints, and the computation of an efficient policy for a multiple objective dynamic programming problem.  相似文献   

12.
Decomposition has proved to be one of the more effective tools for the solution of large-scale problems, especially those arising in stochastic programming. A decomposition method with wide applicability is Benders' decomposition, which has been applied to both stochastic programming as well as integer programming problems. However, this method of decomposition relies on convexity of the value function of linear programming subproblems. This paper is devoted to a class of problems in which the second-stage subproblem(s) may impose integer restrictions on some variables. The value function of such integer subproblem(s) is not convex, and new approaches must be designed. In this paper, we discuss alternative decomposition methods in which the second-stage integer subproblems are solved using branch-and-cut methods. One of the main advantages of our decomposition scheme is that Stochastic Mixed-Integer Programming (SMIP) problems can be solved by dividing a large problem into smaller MIP subproblems that can be solved in parallel. This paper lays the foundation for such decomposition methods for two-stage stochastic mixed-integer programs.  相似文献   

13.
The simplex method for linear programming can be extended to permit the minimization of any convex separable piecewise-linear objective, subject to linear constraints. This three-part paper develops and analyzes a general, computationally practical simplex algorithm for piecewiselinear programming.Part I derives and justifies the essential steps of the algorithm, by extension from the simplex method for linear programming in bounded variables. The proof employs familiar finite-termination arguments and established piecewise-linear duality theory.Part II considers the relaxation of technical assumptions pertaining to finiteness, feasibility and nondegeneracy of piecewise-linear programs. Degeneracy is found to have broader consequences than in the linear case, and the standard techniques for prevention of cycling are extended accordingly.Part III analyzes the computational requirements of piecewise-linear programming. The direct approach embodied in the piecewise-linear simplex algorithm is shown to be inherently more efficient than indirect approaches that rely on transformation of piecewise-linear programs to equivalent linear programs. A concluding section surveys the many applications of piecewise-linear programming in linear programming,l 1 estimation, goal programming, interval programming, and nonlinear optimization.This research has been supported in part by the National Science Foundation under grant MCS-8217261.  相似文献   

14.
《Optimization》2012,61(5):749-757
An integer linear fractional programming problem, whose integer solution is required to satisfy any h out of given n sets of constraints has been discussed in this paper. Method for ranking and scanning all integer points has also been developed and a numerical illustration is included in support of theory.  相似文献   

15.
《Optimization》2012,61(3-4):291-299
In this paper, we propose an “inexact solution” approach to deal with linear semi-infinite programming problems with finitely many variables and infinitely many constraints over a compact metric space. A general convergence proof with some numerical examples are given and the advantages of using this approach are discussed  相似文献   

16.
Applied mathematical programming problems are often approximations of larger, more detailed problems. One criterion to evaluate an approximating program is the magnitude of the difference between the optimal objective values of the original and the approximating program. The approximation we consider is variable aggregation in a convex program. Bounds are derived on the difference between the two optimal objective values. Previous results of Geoffrion and Zipkin are obtained by specializing our results to linear programming. Also, we apply our bounds to a convex transportation problem. Thanks are due to Ron Dembo, Paul Zipkin and the referees for valuable comments. This research was supported by NSF Grant ENG-76-15599.  相似文献   

17.
Numerically stable algorithms for quadratic programming are discussed. A new algorithm is described for indefinite quadratic programming which utilizes methods for updating positivedefinite factorizations only. Consequently all the updating procedures required are common to algorithms for linearly-constrained optimization. The new algorithm can be used for the positive-definite case without loss of efficiency.  相似文献   

18.
It is suggested that we should distinguish between common programming languages and common solutions to specific problems. A solution may depend on specific machine characteristics even though it is expressed in a common language. It is further suggested that in future common programming languages this should be admitted openly by allowing the programmer to get access to the machine characteristics at hand through Environment Enquiries which are part of the language. Some specific examples of Environment Enquiries are given.An earlier version of this paper was published in ALGOL BULLETIN no. 18, October 1964.  相似文献   

19.
Equilibrium programming:The path following approach and dynamics   总被引:5,自引:0,他引:5  
A general formulation of equilibrium is introduced which subsumes a large range of equilibrium models in economics, mathematical programming, game theory, networks, organizations, etc. The existence of a solution is proved by path following and without invocation of a fixed point theorem. The path following procedure provides new means for establishing existence of equilibria, for constructing them and for interpreting them. A dynamic equilibrium model is also presented and the existence, stability and computation of dynamic equilibrium paths are discussed. Moreover, these paths can often be interpreted as adjustment processes.  相似文献   

20.
We formulate a general algorithm for the solution of a convex (but not strictly convex) quadratic programming problem. Conditions are given under which the iterates of the algorithm are uniquely determined. The quadratic programming algorithms of Fletcher, Gill and Murray, Best and Ritter, and van de Panne and Whinston/Dantzig are shown to be special cases and consequently are equivalent in the sense that they construct identical sequences of points. The various methods are shown to differ only in the manner in which they solve the linear equations expressing the Kuhn-Tucker system for the associated equality constrained subproblems. Equivalence results have been established by Goldfarb and Djang for the positive definite Hessian case. Our analysis extends these results to the positive semi-definite case. This research was supported by the Natural Sciences and Engineering Research Council of Canada under Grant No. A8189.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号