首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose an infeasible non-interior path-following method for nonlinear complementarity problems with uniform P-functions. This method is based on the smoothing techniques introduced by Kanzow. A key to our analysis is the introduction of a new notion of neighborhood for the central path which is suitable for infeasible non-interior path-following methods. By restricting the iterates in the neighborhood of the central path, we provide a systematic procedure to update the smoothing parameter and establish the global linear convergence of this method. Some preliminary computational results are reported. Received: March 13, 1997 / Accepted: December 17, 1999?Published online February 23, 2000  相似文献   

2.
The variational inequality problem (VIP) can be reformulated as an unconstrained minimization problem through the D-gap function. It is proved that the D-gap function has bounded level sets for the strongly monotone VIP. A hybrid Newton-type method is proposed for minimizing the D-gap function. Under some conditions, it is shown that the algorithm is globally convergent and locally quadratically convergent. Received May 6, 1997 / Revised version received October 30, 1998?Published online June 11, 1999  相似文献   

3.
We consider convex optimization and variational inequality problems with a given separable structure. We propose a new decomposition method for these problems which combines the recent logarithmic-quadratic proximal theory introduced by the authors with a decomposition method given by Chen-Teboulle for convex problems with particular structure. The resulting method allows to produce for the first time provably convergent decomposition schemes based on C Lagrangians for solving convex structured problems. Under the only assumption that the primal-dual problems have nonempty solution sets, global convergence of the primal-dual sequences produced by the algorithm is established. Received: October 6, 1999 / Accepted: February 2001?Published online September 17, 2001  相似文献   

4.
In this paper we investigate two approaches to minimizing a quadratic form subject to the intersection of finitely many ellipsoids. The first approach is the d.c. (difference of convex functions) optimization algorithm (abbr. DCA) whose main tools are the proximal point algorithm and/or the projection subgradient method in convex minimization. The second is a branch-and-bound scheme using Lagrangian duality for bounding and ellipsoidal bisection in branching. The DCA was first introduced by Pham Dinh in 1986 for a general d.c. program and later developed by our various work is a local method but, from a good starting point, it provides often a global solution. This motivates us to combine the DCA and our branch and bound algorithm in order to obtain a good initial point for the DCA and to prove the globality of the DCA. In both approaches we attempt to use the ellipsoidal constrained quadratic programs as the main subproblems. The idea is based upon the fact that these programs can be efficiently solved by some available (polynomial and nonpolynomial time) algorithms, among them the DCA with restarting procedure recently proposed by Pham Dinh and Le Thi has been shown to be the most robust and fast for large-scale problems. Several numerical experiments with dimension up to 200 are given which show the effectiveness and the robustness of the DCA and the combined DCA-branch-and-bound algorithm. Received: April 22, 1999 / Accepted: November 30, 1999?Published online February 23, 2000  相似文献   

5.
In this paper we take a new look at smoothing Newton methods for solving the nonlinear complementarity problem (NCP) and the box constrained variational inequalities (BVI). Instead of using an infinite sequence of smoothing approximation functions, we use a single smoothing approximation function and Robinson’s normal equation to reformulate NCP and BVI as an equivalent nonsmooth equation H(u,x)=0, where H:ℜ 2n →ℜ 2n , u∈ℜ n is a parameter variable and x∈ℜ n is the original variable. The central idea of our smoothing Newton methods is that we construct a sequence {z k =(u k ,x k )} such that the mapping H(·) is continuously differentiable at each z k and may be non-differentiable at the limiting point of {z k }. We prove that three most often used Gabriel-Moré smoothing functions can generate strongly semismooth functions, which play a fundamental role in establishing superlinear and quadratic convergence of our new smoothing Newton methods. We do not require any function value of F or its derivative value outside the feasible region while at each step we only solve a linear system of equations and if we choose a certain smoothing function only a reduced form needs to be solved. Preliminary numerical results show that the proposed methods for particularly chosen smoothing functions are very promising. Received June 23, 1997 / Revised version received July 29, 1999?Published online December 15, 1999  相似文献   

6.
Li Dong  Guohui Zhao 《Optimization》2016,65(4):729-749
Homotopy methods are globally convergent under weak conditions and robust; however, the efficiency of a homotopy method is closely related with the construction of the homotopy map and the path tracing algorithm. Different homotopies may behave very different in performance even though they are all theoretically convergent. In this paper, a spline smoothing homotopy method for nonconvex nonlinear programming is developed using cubic spline to smooth the max function of the constraints of nonlinear programming. Some properties of spline smoothing function are discussed and the global convergence of spline smoothing homotopy under the weak normal cone condition is proven. The spline smoothing technique uses a smooth constraint instead of m constraints and acts also as an active set technique. So the spline smoothing homotopy method is more efficient than previous homotopy methods like combined homotopy interior point method, aggregate constraint homotopy method and other probability one homotopy methods. Numerical tests with the comparisons to some other methods show that the new method is very efficient for nonlinear programming with large number of complicated constraints.  相似文献   

7.
In this paper, we introduce the notion of a self-regular function. Such a function is strongly convex and smooth coercive on its domain, the positive real axis. We show that any such function induces a so-called self-regular proximity function and a corresponding search direction for primal-dual path-following interior-point methods (IPMs) for solving linear optimization (LO) problems. It is proved that the new large-update IPMs enjoy a polynomial ?(n log) iteration bound, where q≥1 is the so-called barrier degree of the kernel function underlying the algorithm. The constant hidden in the ?-symbol depends on q and the growth degree p≥1 of the kernel function. When choosing the kernel function appropriately the new large-update IPMs have a polynomial ?(lognlog) iteration bound, thus improving the currently best known bound for large-update methods by almost a factor . Our unified analysis provides also the ?(log) best known iteration bound of small-update IPMs. At each iteration, we need to solve only one linear system. An extension of the above results to semidefinite optimization (SDO) is also presented. Received: March 2000 / Accepted: December 2001?Published online April 12, 2002  相似文献   

8.
U. Faigle and W. Kern have recently extended the work of their earlier paper and of M. Queyranne, F. Spieksma and F. Tardella and have shown that a dual greedy algorithm works for a system of linear inequalities with {:0,1}-coefficients defined in terms of antichains of an underlying poset and a submodular function on the set of ideals of the poset under some additional condition on the submodular function.?In this note we show that Faigle and Kern’s dual greedy polyhedra belong to a class of submodular flow polyhedra, i.e., Faigle and Kern’s problem is a special case of the submodular flow problem that can easily be solved by their greedy algorithm. Received: February 1999 / Accepted: December 1999?Published online February 23, 2000  相似文献   

9.
In this paper the problem of finding the global optimum of a concave function over a polytope is considered. A well-known class of algorithms for this problem is the class of conical algorithms. In particular, the conical algorithm based on the so called ω-subdivision strategy is considered. It is proved that, for any given accuracy ε>0, this algorithm stops in a finite time by returning an ε-optimal solution for the problem, while it is convergent for ε=0. Received January 24, 1996 / Revised version received December 9, 1998 Published online June 11, 1999  相似文献   

10.
Inexact implicit methods for monotone general variational inequalities   总被引:32,自引:0,他引:32  
Solving a variational inequality problem is equivalent to finding a solution of a system of nonsmooth equations. Recently, we proposed an implicit method, which solves monotone variational inequality problem via solving a series of systems of nonlinear smooth (whenever the operator is smooth) equations. It can exploit the facilities of the classical Newton–like methods for smooth equations. In this paper, we extend the method to solve a class of general variational inequality problems Moreover, we improve the implicit method to allow inexact solutions of the systems of nonlinear equations at each iteration. The method is shown to preserve the same convergence properties as the original implicit method. Received July 31, 1995 / Revised version received January 15, 1999? Published online May 28, 1999  相似文献   

11.
Nonlinear rescaling vs. smoothing technique in convex optimization   总被引:1,自引:0,他引:1  
We introduce an alternative to the smoothing technique approach for constrained optimization. As it turns out for any given smoothing function there exists a modification with particular properties. We use the modification for Nonlinear Rescaling (NR) the constraints of a given constrained optimization problem into an equivalent set of constraints.?The constraints transformation is scaled by a vector of positive parameters. The Lagrangian for the equivalent problems is to the correspondent Smoothing Penalty functions as Augmented Lagrangian to the Classical Penalty function or MBFs to the Barrier Functions. Moreover the Lagrangians for the equivalent problems combine the best properties of Quadratic and Nonquadratic Augmented Lagrangians and at the same time are free from their main drawbacks.?Sequential unconstrained minimization of the Lagrangian for the equivalent problem in primal space followed by both Lagrange multipliers and scaling parameters update leads to a new class of NR multipliers methods, which are equivalent to the Interior Quadratic Prox methods for the dual problem.?We proved convergence and estimate the rate of convergence of the NR multipliers method under very mild assumptions on the input data. We also estimate the rate of convergence under various assumptions on the input data.?In particular, under the standard second order optimality conditions the NR method converges with Q-linear rate without unbounded increase of the scaling parameters, which correspond to the active constraints.?We also established global quadratic convergence of the NR methods for Linear Programming with unique dual solution.?We provide numerical results, which strongly support the theory. Received: September 2000 / Accepted: October 2001?Published online April 12, 2002  相似文献   

12.
Submodular flow problems, introduced by Edmonds and Giles [2], generalize network flow problems. Many algorithms for solving network flow problems have been generalized to submodular flow problems (cf. references in Fujishige [4]), e.g. the cycle canceling method of Klein [9]. For network flow problems, the choice of minimum-mean cycles in Goldberg and Tarjan [6], and the choice of minimum-ratio cycles in Wallacher [12] lead to polynomial cycle canceling methods. For submodular flow problems, Cui and Fujishige [1] show finiteness for the minimum-mean cycle method while Zimmermann [16] develops a pseudo-polynomial minimum ratio cycle method. Here, we prove pseudo-polynomiality of a larger class of the minimum-ratio variants and, by combining both methods, we develop a polynomial cycle canceling algorithm for submodular flow problems. Received July 22, 1994 / Revised version received July 18, 1997? Published online May 28, 1999  相似文献   

13.
On the truncated conjugate gradient method   总被引:7,自引:0,他引:7  
In this paper, we consider the truncated conjugate gradient method for minimizing a convex quadratic function subject to a ball trust region constraint. It is shown that the reduction in the objective function by the solution obtained by the truncated CG method is at least half of the reduction by the global minimizer in the trust region. Received January 19, 1999 / Revised version received October 1, 1999?Published online November 30, 1999  相似文献   

14.
The concepts of L-convex function and M-convex function have recently been introduced by Murota as generalizations of submodular function and base polyhedron, respectively, and discrete separation theorems are established for L-convex/concave functions and for M-convex/concave functions as generalizations of Frank’s discrete separation theorem for submodular/supermodular set functions and Edmonds’ matroid intersection theorem. This paper shows the equivalence between Murota’s L-convex functions and Favati and Tardella’s submodular integrally convex functions, and also gives alternative proofs of the separation theorems that provide a geometric insight by relating them to the ordinary separation theorem in convex analysis. Received: November 27, 1997 / Accepted: December 16, 1999?Published online May 12, 2000  相似文献   

15.
On the core of ordered submodular cost games   总被引:5,自引:0,他引:5  
A general ordertheoretic linear programming model for the study of matroid-type greedy algorithms is introduced. The primal restrictions are given by so-called weakly increasing submodular functions on antichains. The LP-dual is solved by a Monge-type greedy algorithm. The model offers a direct combinatorial explanation for many integrality results in discrete optimization. In particular, the submodular intersection theorem of Edmonds and Giles is seen to extend to the case with a rooted forest as underlying structure. The core of associated polyhedra is introduced and applications to the existence of the core in cooperative game theory are discussed. Received: November 2, 1995 / Accepted: September 15, 1999?Published online February 23, 2000  相似文献   

16.
Piecewise affine functions arise from Lagrangian duals of integer programming problems, and optimizing them provides good bounds for use in a branch and bound method. Methods such as the subgradient method and bundle methods assume only one subgradient is available at each point, but in many situations there is more information available. We present a new method for optimizing such functions, which is related to steepest descent, but uses an outer approximation to the subdifferential to avoid some of the numerical problems with the steepest descent approach. We provide convergence results for a class of outer approximations, and then develop a practical algorithm using such an approximation for the compact dual to the linear programming relaxation of the uncapacitated facility location problem. We make a numerical comparison of our outer approximation method with the projection method of Conn and Cornuéjols, and the bundle method of Schramm and Zowe. Received September 10, 1998 / Revised version received August 1999?Published online December 15, 1999  相似文献   

17.
Using a simple analytical example, we demonstrate that a class of interior point methods for general nonlinear programming, including some current methods, is not globally convergent. It is shown that those algorithms produce limit points that are neither feasible nor stationary points of some measure of the constraint violation, when applied to a well-posed problem. Received: December 1999 / Accepted: May 2000?Published online August 18, 2000  相似文献   

18.
A class of affine-scaling interior-point methods for bound constrained optimization problems is introduced which are locally q–superlinear or q–quadratic convergent. It is assumed that the strong second order sufficient optimality conditions at the solution are satisfied, but strict complementarity is not required. The methods are modifications of the affine-scaling interior-point Newton methods introduced by T. F. Coleman and Y. Li (Math. Programming, 67, 189–224, 1994). There are two modifications. One is a modification of the scaling matrix, the other one is the use of a projection of the step to maintain strict feasibility rather than a simple scaling of the step. A comprehensive local convergence analysis is given. A simple example is presented to illustrate the pitfalls of the original approach by Coleman and Li in the degenerate case and to demonstrate the performance of the fast converging modifications developed in this paper. Received October 2, 1998 / Revised version received April 7, 1999?Published online July 19, 1999  相似文献   

19.
Based on a new symmetrically perturbed smoothing function, the generalized nonlinear complementarity problem defined on a polyhedral cone is reformulated as a system of smoothing equations. Then we suggest a new nonmonotone derivative-free line search and combine it into the smoothing Broyden-like method. The proposed algorithm contains the usual monotone line search as a special case and can overcome the difficult of smoothing Newton methods in solving the smooth equations to some extent. Under mild conditions, we prove that the proposed algorithm has global and local superlinear convergence. Furthermore, the algorithm is locally quadratically convergent under suitable assumptions. Preliminary numerical results are also reported.  相似文献   

20.
We present a branch-and-cut algorithm to solve capacitated network design problems. Given a capacitated network and point-to-point traffic demands, the objective is to install more capacity on the edges of the network and route traffic simultaneously, so that the overall cost is minimized. We study a mixed-integer programming formulation of the problem and identify some new facet defining inequalities. These inequalities, together with other known combinatorial and mixed-integer rounding inequalities, are used as cutting planes. To choose the branching variable, we use a new rule called “knapsack branching”. We also report on our computational experience using real-life data. Received April 29, 1997 / Revised version received January 9, 1999? Published online June 28, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号