首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The objective of the present study is to investigate the effects of variable viscosity on incompressible laminar pulsatile flow of blood through an overlapping doubly constricted tapered artery. To mimic the realistic situation, wall of the artery is taken to be flexible, and physiologically relevant pulsatile flow is introduced. The governing equations of blood flow are made dimensionless. A coordinate transformation is used to make the overlapping doubly constricted wall geometry of tube to a straight tube. Taking advantage of the Stream function–Vorticity formulation, the system of partial differential equations is then solved numerically by finite difference approximations. Effects of Reynolds number, Strouhal number, degree of contraction, tapering angle, and viscosity parameters are presented graphically and analyzed. The results show that formation of stenosis and tapering disturb the flow field significantly, and degree of stenosis is more important in influencing blood flow compared with tapering.  相似文献   

2.
A nonlinear two‐dimensional micropolar fluid model for blood flow in a tapered artery with a single stenosis is considered. This model takes into account blood rheology in which blood consists of microelements suspended in plasma. The classical Navier–Stokes theory is inadequate to describe the microrotations or particles' spin of such suspension in a viscous medium. The governing equations involving unsteady nonlinear partial differential equations are solved using a finite difference scheme. A quantitative analysis performed through numerical computation shows that the axial velocity profile and the flow rate decrease and the wall shear stress increases once the artery is narrower in the presence of the polar effect. Furthermore, the taper angle certainly bears the potential to influence the velocity and the flow characteristics to considerable extent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Pulsatile blood flows in curved atherosclerotic arteries are studied by com- puter simulations.Computations are carried out with various values of physiological parameters to examine the effects of flow parameters on the disturbed flow patterns downstream of a curved artery with a stenosis at the inner wall.The numerical re- suits indicate a strong dependence of flow pattern on the blood viscosity and inlet flow rate,while the influence of the inlet flow profile to the flow pattem in downstream is negligible.  相似文献   

4.
Physiological pulsatile flow in a 3D model of arterial stenosis is investigated by using large eddy simulation (LES) technique. The computational domain chosen is a simple channel with a biological type stenosis formed eccentrically on the top wall. The physiological pulsation is generated at the inlet using the first harmonic of the Fourier series of pressure pulse. In LES, the large scale flows are resolved fully while the unresolved subgrid scale (SGS) motions are modelled using a localized dynamic model. Due to the narrowing of artery the pulsatile flow becomes transition-to-turbulent in the downstream region of the stenosis, where a high level of turbulent fluctuations is achieved, and some detailed information about the nature of these fluctuations are revealed through the investigation of the turbulent energy spectra. Transition-to-turbulent of the pulsatile flow in the post stenosis is examined through the various numerical results such as velocity, streamlines, velocity vectors, vortices, wall pressure and shear stresses, turbulent kinetic energy, and pressure gradient. A comparison of the LES results with the coarse DNS are given for the Reynolds number of 2000 in terms of the mean pressure, wall shear stress as well as the turbulent characteristics. The results show that the shear stress at the upper wall is low just prior to the centre of the stenosis, while it is maximum in the throat of the stenosis. But, at the immediate post stenotic region, the wall shear stress takes the oscillating form which is quite harmful to the blood cells and vessels. In addition, the pressure drops at the throat of the stenosis where the re-circulated flow region is created due to the adverse pressure gradient. The maximum turbulent kinetic energy is located at the post stenosis with the presence of the inertial sub-range region of slope −5/3.  相似文献   

5.
The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel–Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.  相似文献   

6.
In the present paper, blood flow through a tapered artery with a stenosis is analyzed, assuming the flow is steady and blood is treated as non-Newtonian power law fluid model. Exact solution has been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest. Some special cases of the problem are also presented.  相似文献   

7.
This paper looked at the numerical investigations of the generalized Newtonian blood flow through a couple of irregular arterial stenoses. The flow is treated to be axisymmetric, with an outline of the stenoses obtained from a three dimensional casting of a mild stenosed artery, so that the flow effectively becomes two‐dimensional. The Marker and Cell (MAC) method is developed for the governing unsteady generalized Newtonian equations in staggered grid for viscous incompressible flow in the cylindrical polar co‐ordinates system. The derived pressure‐Poisson equation was solved using Successive‐Over‐Relaxation (S.O.R.) method and the pressure‐velocity correction formulae have been derived. Computations are performed for the pressure drop, the wall shear stress distribution and the separation region. The presented computations show that in comparison to the corresponding Newtonian model the generalized Newtonian fluid experiences higher pressure drop, lower peak wall shear stress and smaller separation region. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 960–981, 2011  相似文献   

8.
采用计算流体力学方法分别对6种狭窄率的颈动脉内非Newton瞬态血流进行流固耦合数值分析.研究了狭窄率对颈动脉内血流动力学分布的影响,以探索狭窄率与颈动脉内粥样斑块形成的关系.结果表明,狭窄率不同的颈动脉内血流动力学分布特性明显不同,与0.05,0.1,0.2,0.3和04这5种狭窄率的颈动脉内血流动力学分布特性相比,狭窄率为0.5的颈动脉内血流动力学分布独特,狭窄部位附近区域存在面积较大的低速涡流区;复杂血流作用下,该区域分布低壁面压力,异常壁面切应力,较大管壁形变量和von Mises应力;血流速度低使血液中脂质、纤维蛋白等大分子易沉积,低壁面压力引起的明显“负压”效应引发脑部供血障碍,异常壁面切应力作用下粥样斑块易破裂与脱落,并堵塞脑血管,较大的von Mises应力易引起应力集中,导致血管破裂,为脑卒中发生提供有利条件.因此,狭窄率越大对颈动脉内血流动力学分布的影响越显著,促进颈动脉粥样斑块形成与发展,并引发缺血性脑卒中.  相似文献   

9.
The present investigation deals with a mathematical model of blood flow through an asymmetric (about its narrowest point) arterial constriction obtained from casting of a mildly stenosed artery. The flowing blood is represented as the suspension of all red cells (erythrocytes) in plasma assumed to be Casson fluid, while the arterial wall is considered to be rigid having differently shaped stenoses in its lumen arising from various types of abnormal growth or plaque formation. The governing equations of motion accompanied by the appropriate choice of the boundary conditions are solved numerically by Marker and Cell method in order to compute the physiologically significant quantities with desired degree of accuracy. The necessary checking for numerical stability has been incorporated in the algorithm for better precision of the results computed. The quantitative analyses have been carried out finally with the inclusion of the respective profiles of the flow field over the entire arterial segment as well. The key factors such as the wall shear stress, the pressure drop and the velocity profiles are exhibited graphically and examined thoroughly for qualitative insight into blood flow phenomena through arterial stenosis.  相似文献   

10.
中医滚法推拿对血液流动影响的数值研究   总被引:3,自引:0,他引:3  
研究了中医滚法推拿的血液动力学机制.用狭窄轴向运动来模拟滚法推拿,通过轴对称非线性模型和含网格重分算法的任意欧拉-拉格朗日有限元方法研究狭窄轴向运动的轴对称刚性管中的粘性流动.流量和管壁切应力通过数值求解Navier-Stokes方程得到.数值结果表明,狭窄运动的频率,也就是滚法推拿的频率对流量和管壁切应力有很大的扰动作用.滚法推拿中另一个可变参数——刻划狭窄严重程度的狭窄度,对流量和管壁切应力同样表现出显著影响.这些数值结果可以为推拿的临床应用提供一些值得参考的数据.  相似文献   

11.
Pulsatile flow of blood through mild stenosed narrow arteries is analyzed by treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the coupled implicit system of non-linear differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The effects of pulsatility, stenosis, peripheral layer and non-Newtonian behavior of blood on these flow quantities are discussed. It is found that the pressure drop, plug core radius, wall shear stress and resistance to flow increase with the increase of the yield stress or stenosis size while all other parameters held constant. The percentage of increase in the resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with those of the single-fluid model.  相似文献   

12.
The effect of magnetic field has been examined on rheological models of blood. One. of them is the Power Law model and the other is the generalized Maxwell model. It is noticed that the magnetic field has a significant effect on the flow phenomena. The investigation shows that the model considered here is capable of taking into account the rheological properties affecting the blood flow and hemodynamic features, which may be important for medical doctors to predict diseases for individuals on the basis of the pattern of flow for an elastic artery in the presence of a transverses magnetic field. The effects of a magnetic field have been used to control the flow, which may be useful in certain hypertension cases, etc.  相似文献   

13.
This study analyses the pulsatile flow of blood through mild stenosed narrow arteries, treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is employed to solve the resulting coupled implicit system of non-linear partial differential equations. The expressions for shear stress, velocity, wall shear stress, plug core radius, flow rate and longitudinal impedance to flow are obtained. The effects of pulsatility, stenosis depth, peripheral layer thickness, body acceleration and non-Newtonian behavior of blood on these flow quantities are discussed. It is noted that the plug core radius, wall shear stress and longitudinal impedance to flow increase as the yield stress and stenosis depth increase and they decrease with the increase of the body acceleration, pressure gradient, width of the peripheral layer thickness. It is observed that the plug flow velocity and flow rate increase with the increase of the pulsatile Reynolds number, body acceleration, pressure gradient and the width of the peripheral layer thickness and the reverse behavior is found when the yield stress, stenosis depth and lead angle increase. It is also recorded that the wall shear stress and longitudinal impedance to flow are considerably lower for the two-fluid Casson model than that of the single-fluid Casson model. It is found that the presence of body acceleration and peripheral layer influences the mean flow rate and mean velocity by increasing their magnitude significantly in the arteries.  相似文献   

14.
The paper deals with numerical investigation of the effect of plaque morphology on the flow characteristics in a diseased coronary artery using realistic plaque morphology. The morphological information of the lumen and the plaque is obtained from intravascular ultrasound imaging measurements of 42 patients performed at Cleveland Clinic Foundation, Ohio. For this data, study of Bhaganagar et al. (2010) [1] has revealed the stenosis for 42 patients can be categorized into four types – type I (peak-valley), type II (ascending), type III (descending), and type IV (diffuse). The aim of the present study is to isolate the effect of shape of the stenosis on the flow characteristics for a given degree of the stenosis. In this study, we conduct fluid dynamic simulations for the four stenosis types (type I–IV) and analyze the differences in the flow characteristics between these types. Finely refined tetrahedral mesh for the 3-D solid model of the artery with plaques has been generated. The 3-D steady flow simulations were performed using the turbulence (kε) model in a finite volume based computational fluid dynamics solver. The axial velocity, the radial velocity, turbulence kinetic energy and wall shear stress profiles of the plaque have been analyzed. From the axial and radial velocity profiles results the differences in the velocity patterns are significantly visible at proximal as well as distal to the throat, region of maximum stenosis. Turbulent kinetic energy and wall shear stress profiles have revealed significant differences in the vicinity of the plaque. Additional unsteady flow simulations have been performed to validate the hypothesis of the significance of plaque morphology in flow alterations in diseased coronary artery. The results revealed the importance of accounting for plaque morphology in addition to plaque height to accurately characterize the turbulent flow in a diseased coronary artery.  相似文献   

15.
Of concern in the paper is a generalized theoretical study of the non-Newtonian characteristics of peristaltic flow of blood through micro-vessels, e.g. arterioles. The vessel is considered to be of variable cross-section and blood to be a Herschel–Bulkley type of fluid. The progressive wave front of the peristaltic flow is supposed sinusoidal/straight section dominated (SSD) (expansion/contraction type); Reynolds number is considered to be small with reference to blood flow in the micro-circulatory system. The equations that govern the non-Newtonian peristaltic flow of blood are considered to be non-linear. The objective of the study has been to examine the effect of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, wall shear stress, streamline pattern and trapping. It is observed that the numerical estimates for the aforesaid quantities in the case of peristaltic transport of blood in a channel are much different from those for flow in an axisymmetric vessel of circular cross-section. The study further shows that peristaltic pumping, flow velocity and wall shear stress are significantly altered due to the non-uniformity of the cross-sectional radius of blood vessels of the micro-circulatory system. Moreover, the magnitude of the amplitude ratio and the value of the fluid index are important parameters that affect the flow behaviour. Novel features of SSD wave propagation that affect the flow behaviour of blood have also been discussed.  相似文献   

16.
In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.  相似文献   

17.
In this article, the steady‐state flow of a Hagen‐Poiseuille modelin a circular pipe is considered and entropy generation due tofluid friction and heat transfer is examined. Because of variationin fluid viscosity, the entropy generation in the flow varies. Inhis model, Arrhenius law is applied for temperature equation‐dependent viscosity, and the influence of viscosity parameters on the entropy generation number and distribution of temperature and velocity is investigated. The governing momentum and energy equations, which are coupled due to the dissipative term in the energy equation, were solved by analytical techniques. The solutions of equations via perturbation method and homotopy perturbation method are obtained and then compared with those of numerical solutions. It is found that the fluid viscosity influences considerably the temperature distribution in the fluid close to the pipe wall, and increasing pipe wall temperature enhances the rate of entropy generation. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 529–540, 2011  相似文献   

18.
Determination of arterial wall shear stress   总被引:4,自引:0,他引:4  
The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.  相似文献   

19.
在本文中,研究了注入轴对称模腔非牛顿流体非定常流动.本文的第二部份研究了上随体Maxwell流体管内热流动.对于注入模腔流动.其本构方程采用幂律流体模型方程.为了避免在表现粘度中温度关系引起的非线性.引进了一特征粘度的概念.描述本力学过程的基本方程是,本构方程、定常状态的运动方程、非定常能量方程及连续方程.该方程组在空间是二维问题,在数学上是三维问题.采用分裂差分格式求得本方程组的数值解答.分裂法曾成功应用于求解牛顿流体问题.在本文中,首次将分裂法成功地应用解决非牛顿流体流动问题.对于圆管内热流,给出了差分格式,使基本方程组化为一个三对角方程组.其结果,给出了不同时刻的模腔内二维温度分布.  相似文献   

20.
研究肾动脉狭窄(RAS)对血液流动和血管壁的影响.根据CT扫描图像,重建腹部主动脉和肾动脉的解剖模型,通过模型的脉动流进行了仿真计算,计算中考虑了流体-固体结构的相互作用(FSI).研究RAS对血管壁剪切应力和位移的影响,RAS使得肾动脉中流量减少,肾素-血管紧缩素系统可能被激活,从而导致严重的高血压.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号