首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
There are many research available on the study of a real-valued fractal interpolation function and fractal dimension of its graph. In this paper, our main focus is to study the dimensional results for a vector-valued fractal interpolation function and its Riemann–Liouville fractional integral. Here, we give some results which ensure that dimensional results for vector-valued functions are quite different from real-valued functions. We determine interesting bounds for the Hausdorff dimension of the graph of a vector-valued fractal interpolation function. We also obtain bounds for the Hausdorff dimension of the associated invariant measure supported on the graph of a vector-valued fractal interpolation function. Next, we discuss more efficient upper bound for the Hausdorff dimension of measure in terms of probability vector and contraction ratios. Furthermore, we determine some dimensional results for the graph of the Riemann–Liouville fractional integral of a vector-valued fractal interpolation function.  相似文献   

2.
The determination of a space‐dependent source term along with the solution for a 1‐dimensional time fractional diffusion equation with nonlocal boundary conditions involving a parameter β>0 is considered. The fractional derivative is generalization of the Riemann‐Liouville and Caputo fractional derivatives usually known as Hilfer fractional derivative. We proved existence and uniqueness results for the solution of the inverse problem while over‐specified datum at 2 different time is given. The over‐specified datum at 2 time allows us to avoid initial condition in terms of fractional integral associated with Hilfer fractional derivative.  相似文献   

3.
In this paper, a novel fractional‐integer integral type sliding mode technique for control and generalized function projective synchronization of different fractional‐order chaotic systems with different dimensions in the presence of disturbances is presented. When the upper bounds of the disturbances are known, a sliding mode control rule is proposed to insure the existence of the sliding motion in finite time. Furthermore, an adaptive sliding mode control is designed when the upper bounds of the disturbances are unknown. The stability analysis of sliding mode surface is given using the Lyapunov stability theory. Finally, the results performed for synchronization of three‐dimensional fractional‐order chaotic Hindmarsh‐Rose (HR) neuron model and two‐dimensional fractional‐order chaotic FitzHugh‐Nagumo (FHN) neuron model.  相似文献   

4.
Some mathematical models of applied problems lead to the need of solving boundary value problems with a fractional power of an elliptic operator. In a number of works, approximations of such a nonlocal operator are constructed on the basis of an integral representation with a singular integrand. In the present article, new integral representations are proposed for operators with fractional powers. Approximations are based on the classical quadrature formulas. The results of numerical experiments on the accuracy of quadrature formulas are presented. The proposed approximations are used for numerical solving a model two‐dimensional boundary value problem for fractional diffusion.  相似文献   

5.
We establish a relation between stable distributions in probability theory and the fractional integral. Moreover, it turns out that the parameter of the stable distribution coincides with the exponent of the fractional integral. It follows from an analysis of the obtained results that equations with the fractional time derivative describe the evolution of some physical system whose time degree of freedom becomes stochastic, i.e., presents a sum of random time intervals subject to a stable probability distribution. We discuss relations between the fractal Cantor set (Cantor strips) and the fractional integral. We show that the possibility to use this relation as an approximation of the fractional integral is rather limited.  相似文献   

6.
In this article, we discuss the steady state fractional advection dispersion equation (FADE) on bounded domains in ?d. Fractional differential and integral operators are defined and analyzed. Appropriate fractional derivative spaces are defined and shown to be equivalent to the fractional dimensional Sobolev spaces. A theoretical framework for the variational solution of the steady state FADE is presented. Existence and uniqueness results are proven, and error estimates obtained for the finite element approximation. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 256–281, 2007  相似文献   

7.
Fractional Brownian motion can be represented as an integral of a deterministic kernel w.r.t. an ordinary Brownian motion either on infinite or compact interval. In previous literature fractional Lévy processes are defined by integrating the infinite interval kernel w.r.t. a general Lévy process. In this article we define fractional Lévy processes using the com pact interval representation.

We prove that the fractional Lévy processes presented via different integral transformations have the same finite dimensional distributions if and only if they are fractional Brownian motions. Also, we present relations between different fractional Lévy processes and analyze the properties of such processes. A financial example is introduced as well.  相似文献   

8.
《Mathematische Nachrichten》2018,291(2-3):443-491
In this paper, we propose the concepts of Caputo fractional derivatives and Caputo type Hadamard fractional derivatives for piecewise continuous functions. We obtain general solutions of four classes of impulsive fractional differential equations (Theorem 3.1–Theorem 3.4) respectively. These results are applied to converting boundary value problems for impulsive fractional differential equations to integral equations. Some comments are made on recently published papers (see Section 4).  相似文献   

9.
A backward Euler alternating direction implicit (ADI) difference scheme is formulated and analyzed for the three‐dimensional fractional evolution equation. In our method, the Riemann‐Liouville fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, an ADI technique is adopted to reduce the multidimensional problem to a series of one‐dimensional problems. A fully discrete difference scheme is constructed with space discretization by finite difference method. Two new inner products and corresponding norms are defined to analyze the scheme. The verification of stability and convergence is based on the nonnegative character of the real quadratic form associated with the convolution quadrature. Numerical experiments are reported to demonstrate the efficiency of our scheme.  相似文献   

10.
The paper is concerned with the problem of the robust stabilization for a class of fractional order linear systems with positive real uncertainty under Riemann–Liouville (RL) derivatives. Firstly, by utilizing the continuous frequency distributed model of the fractional integrator, the fractional order system is expressed as an infinite dimensional integral order system. And via using indirect Lyapunov approach and linear matrix inequality techniques, sufficient condition for robust asymptotic stability of the fractional order systems and design methods of the state feedback controller are presented. Secondly, by using matrixs singular value decomposition technique the static output feedback controller and observer-based controller for asymptotically stabilizing the fractional order systems are derived. Finally, the validity of the proposed methods are demonstrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号