首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
A physical model of the fundamental configuration of two mutually coupled semiconductor lasers is presented for logic-gate applications, and the principles of optoelectronic logic computing based on chaotic synchronization or chaotic de-synchronization are defined. Two laser diodes were coupled via injection of each into the opposite laser and became chaotic; our analysis showed that the oscillation derives from chaotic fluctuations after a progression from stability to period-doubling by varying the coupling factor, delay time or detuning. Chaotic synchronization is achieved between the two lasers through the coupling, where we found chaotic and quasi-periodic synchronization regions. Based on the chaotic synchronization system, three optoelectronic logic gates can be implemented by modulating the laser diode current to synchronize or de-synchronize the two chaotic states. Finally, we studied the effects of resynchronization time on logic gate function in a practical implementation of the system. Numerical results show the validity and feasibility of the method.  相似文献   

2.
Based on the singular system observer, this paper proposes an effective approach for chaotic synchronization and private communication. When the useful information is modulated in a chaotic system and its dynamic equation is not available, we can consider the transmitted signal as an external system state. Then we can design a singular observer which has higher dimension. The advantage of such a design is that we can avoid using the derivation information of the transmitted signal. By adopting the singular system observer approach, the transmitted signal can be recovered successfully by the observer. Numerical simulations show the effectiveness of the proposed method.  相似文献   

3.
In this paper, we proposed a novel three-order autonomous circuit to construct a chaotic circuit with double scroll characteristic. The design idea is to use RLC elements and a nonlinear resistor. The one of salient features of the chaotic circuit is that the circuit with two flexible breakpoints of nonlinear element, and the advantage of the flexible breakpoint is that it increased complexity of the dynamical performance. Here, if we take a large and suitable breakpoint value, then the chaotic state can masking a large input signal in the circuit. Furthermore, we proposed a secure communication hyperchaotic system based on the proposed chaotic circuits, where the chaotic communication system is constituted by a chaotic transmitter and a chaotic receiver. To achieve the synchronization between the transmitter and the receiver, we are using a suitable Lyapunov function and Lyapunov theorem to design the feedback control gain. Thus, the transmitting message masked by chaotic state in the transmitter can be guaranteed to perfectly recover in the receiver. To achieve the systems performance, some basic components containing OPA, resistor and capacitor elements are used to implement the proposed communication scheme. From the viewpoints of circuit implementation, this proposed chaotic circuit is superior to the Chua chaotic circuits. Finally, the test results containing simulation and the circuit measurement are shown to demonstrate that the proposed method is correct and feasible.  相似文献   

4.
We report on the degradation of the zero-voltage supercurrent generated in a Josephson tunnel junction residing in an asymmetric potential of the ratchet type, and driven by a quasiperiodic external signal having incommensurable frequencies with irrational ratio ω2/ω1 equals to the Golden Mean. In the underdamped regime and via computing the current–voltage (I–V) characteristic curves, we demonstrate that the disappearance of the superconducting state can be correlated to chaotic behaviour, where dynamical phase fluctuations and symmetry breakings associated with the potential and modulating signal are substantially taking place.  相似文献   

5.
We propose a chaos time-domain reflectometry (CTDR) for locating faults on live wires. This method uses a chaotic output of an improved Colpitts oscillator as probe signal, and detects wire faults by correlating a duplicate with the echo of the probe signal. Benefiting from the anti-jamming of the correlation function of the wideband chaos, fault location on live wires can be achieved. We experimentally demonstrate the detection for live wires in a digital communication system, in which a type of digital signal named high density bipolar of order 3 (HDB3) is transmitted. The effects of the chaotic probe signal on the bit error rate (BER) of the transmitted HDB3 at different rates are analyzed. Meanwhile, the influences of the backward HDB3 reflected by wiring faults on the signal-noise-ratio (SNR) of CTDR measurement are examined experimentally. The results show that fault detection on live wires is achieved when the power of the chaotic probe signal is about from -24.8 dB to -13.5 dB lower than that of the transmitted digital signal. In this case, the BER is kept less than 3E-10, and the SNR of CTDR is higher than 3 dB. Besides, the auto-correlation properties of the improved Colpitts oscillator at different states are investigated experimentally to explore the suitable chaotic states for the CTDR.  相似文献   

6.
We report on the degradation of the zero-voltage supercurrent generated in a Josephson tunnel junction residing in an asymmetric potential of the ratchet type, and driven by a quasiperiodic external signal having incommensurable frequencies with irrational ratio ω2/ω1 equals to the Golden Mean. In the underdamped regime and via computing the current–voltage (I–V) characteristic curves, we demonstrate that the disappearance of the superconducting state can be correlated to chaotic behaviour, where dynamical phase fluctuations and symmetry breakings associated with the potential and modulating signal are substantially taking place.  相似文献   

7.
Chaotic systems would degrade owing to finite computing precisions, and such degradation often seriously affects the performance of digital chaos-based applications. In this paper, a chaotification method is proposed to solve the dynamical degradation of digital chaotic systems based on a hybrid structure, where a continuous chaotic system is applied to control the digital chaotic system, and a unidirectional coupling controller that combines a linear external state control with a modular function is designed. Moreover, we proof rigorously that a class of digital chaotic systems can be driven to be chaotic in the sense that the system is sensitive to initial conditions. Different from the existing remedies, this method can recover the dynamical properties of system, and even make some properties better than those of the original chaotic system. Thus, this new approach can be applied to the fields of chaotic cryptography and secure communication.  相似文献   

8.
This article investigates the optimal synchronization of two different fractional‐order chaotic systems with two kinds of cost function. We use calculus of variations for minimizing cost function subject to synchronization error dynamics. We introduce optimal control problem to solve fractional Euler–Lagrange equations. Optimal control signal and minimum time of synchronization are obtained by proposed method. Examples show the optimal synchronization of two different systems with two different cost functions. First, we use an ordinary integer cost function then we use a fractional‐order cost function and comparing the results. Finally, we suggest a cost function which has the optimal solution of this problem, and we can extend this solution to solve other synchronization problems. © 2016 Wiley Periodicals, Inc. Complexity 21: 401–416, 2016  相似文献   

9.
From the unicity and orthogonality properties of chaotic sequences, it is demonstrated that a sum of N chaotic signals generated from a fixed class of chaotic systems is unique. Consequently, within a framework of a multi-user transmission, it is shown that synchronizing N chaotic carriers that emit simultaneously on the same frequency band is feasible. In this paper, the carriers are generated from Chua’s circuits and are modulated in amplitude by the information signal. Demodulation is ensured by the minimization of a cost function. Numerical simulations show that this synchronization method is robust in presence of noise and allows the integration of a high number of users.  相似文献   

10.
We consider different ways for encryption and decryption of information in communication systems using chaotic signal of a time-delay system as a carrier. A method is proposed for extracting a hidden message in the case when the parameters of the chaotic transmitter are a priori unknown. For different configurations of the transmitter the procedure of information signal extraction from the transmitted signal is demonstrated using numerical data produced by nonlinear mixing of the chaotic signal of the Mackey–Glass system and frequency-modulated harmonic signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号