首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims at showing that the class of augmented Lagrangian functions, introduced by Rockafellar and Wets, can be derived, as a particular case, from a nonlinear separation scheme in the image space associated with the given problem; hence, it is part of a more general theory. By means of the image space analysis, local and global saddle-point conditions for the augmented Lagrangian function are investigated. It is shown that the existence of a saddle point is equivalent to a nonlinear separation of two suitable subsets of the image space. Under second-order sufficiency conditions in the image space, it is proved that the augmented Lagrangian admits a local saddle point. The existence of a global saddle point is then obtained under additional assumptions that do not require the compactness of the feasible set.  相似文献   

2.
This paper aims at showing that the class of augmented Lagrangian functions for nonlinear semidefinite programming problems can be derived, as a particular case, from a nonlinear separation scheme in the image space associated with the given problem. By means of the image space analysis, a global saddle point condition for the augmented Lagrangian function is investigated. It is shown that the existence of a saddle point is equivalent to a regular nonlinear separation of two suitable subsets of the image space. Without requiring the strict complementarity, it is proved that, under second order sufficiency conditions, the augmented Lagrangian function admits a local saddle point. The existence of global saddle points is then obtained under additional assumptions that do not require the compactness of the feasible set. Motivated by the result on global saddle points, we propose two modified primal-dual methods based on the augmented Lagrangian using different strategies and prove their convergence to a global solution and the optimal value of the original problem without requiring the boundedness condition of the multiplier sequence.  相似文献   

3.
In this paper, by exploiting the image space analysis we investigate a class of constrained extremum problems, the constraining function of which is set-valued. We show that a (regular) linear separation in the image space is equivalent to the existence of saddle points of Lagrangian and generalized Lagrangian functions and we also give Lagrangian type optimality conditions for the class of constrained extremum problems under suitable generalized convexity and compactness assumptions. Moreover, we consider an exact penalty problem for the class of constrained extremum problems and prove that it is equivalent to the existence of a regular linear separation under suitable generalized convexity and compactness assumptions.  相似文献   

4.
Yi Zhang  Liwei Zhang  Yue Wu 《TOP》2014,22(1):45-79
The focus of this paper is on studying an inverse second-order cone quadratic programming problem, in which the parameters in the objective function need to be adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with cone constraints, and its dual, which has fewer variables than the original one, is a semismoothly differentiable (SC 1) convex programming problem with both a linear inequality constraint and a linear second-order cone constraint. We demonstrate the global convergence of the augmented Lagrangian method with an exact solution to the subproblem and prove that the convergence rate of primal iterates, generated by the augmented Lagrangian method, is proportional to 1/r, and the rate of multiplier iterates is proportional to $1/\sqrt{r}$ , where r is the penalty parameter in the augmented Lagrangian. Furthermore, a semismooth Newton method with Armijo line search is constructed to solve the subproblems in the augmented Lagrangian approach. Finally, numerical results are reported to show the effectiveness of the augmented Lagrangian method with both an exact solution and an inexact solution to the subproblem for solving the inverse second-order cone quadratic programming problem.  相似文献   

5.
In this two-part study, we develop a unified approach to the analysis of the global exactness of various penalty and augmented Lagrangian functions for constrained optimization problems in finite-dimensional spaces. This approach allows one to verify in a simple and straightforward manner whether a given penalty/augmented Lagrangian function is exact, i.e., whether the problem of unconstrained minimization of this function is equivalent (in some sense) to the original constrained problem, provided the penalty parameter is sufficiently large. Our approach is based on the so-called localization principle that reduces the study of global exactness to a local analysis of a chosen merit function near globally optimal solutions. In turn, such local analysis can be performed with the use of optimality conditions and constraint qualifications. In the first paper, we introduce the concept of global parametric exactness and derive the localization principle in the parametric form. With the use of this version of the localization principle, we recover existing simple, necessary, and sufficient conditions for the global exactness of linear penalty functions and for the existence of augmented Lagrange multipliers of Rockafellar–Wets’ augmented Lagrangian. We also present completely new necessary and sufficient conditions for the global exactness of general nonlinear penalty functions and for the global exactness of a continuously differentiable penalty function for nonlinear second-order cone programming problems. We briefly discuss how one can construct a continuously differentiable exact penalty function for nonlinear semidefinite programming problems as well.  相似文献   

6.
In this paper, we present a necessary and sufficient condition for a zero duality gap between a primal optimization problem and its generalized augmented Lagrangian dual problems. The condition is mainly expressed in the form of the lower semicontinuity of a perturbation function at the origin. For a constrained optimization problem, a general equivalence is established for zero duality gap properties defined by a general nonlinear Lagrangian dual problem and a generalized augmented Lagrangian dual problem, respectively. For a constrained optimization problem with both equality and inequality constraints, we prove that first-order and second-order necessary optimality conditions of the augmented Lagrangian problems with a convex quadratic augmenting function converge to that of the original constrained program. For a mathematical program with only equality constraints, we show that the second-order necessary conditions of general augmented Lagrangian problems with a convex augmenting function converge to that of the original constrained program.This research is supported by the Research Grants Council of Hong Kong (PolyU B-Q359.)  相似文献   

7.
In this paper, we apply a partial augmented Lagrangian method to mathematical programs with complementarity constraints (MPCC). Specifically, only the complementarity constraints are incorporated into the objective function of the augmented Lagrangian problem while the other constraints of the original MPCC are retained as constraints in the augmented Lagrangian problem. We show that the limit point of a sequence of points that satisfy second-order necessary conditions of the partial augmented Lagrangian problems is a strongly stationary point (hence a B-stationary point) of the original MPCC if the limit point is feasible to MPCC, the linear independence constraint qualification for MPCC and the upper level strict complementarity condition hold at the limit point. Furthermore, this limit point also satisfies a second-order necessary optimality condition of MPCC. Numerical experiments are done to test the computational performances of several methods for MPCC proposed in the literature. This research was partially supported by the Research Grants Council (BQ654) of Hong Kong and the Postdoctoral Fellowship of The Hong Kong Polytechnic University. Dedicated to Alex Rubinov on the occassion of his 65th birthday.  相似文献   

8.
In recent years second-order sufficient conditions of an isolated local minimizer for convex composite optimization problems have been established. In this paper, second-order optimality conditions are obtained of aglobal minimizer for convex composite problems with a non-finite valued convex function and a twice strictly differentiable function by introducing a generalized representation condition. This result is applied to a minimization problem with a closed convex set constraint which is shown to satisfy the basic constraint qualification. In particular, second-order necessary and sufficient conditions of a solution for a variational inequality problem with convex composite inequality constraints are obtained. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

9.

This paper addresses problems of second-order cone programming important in optimization theory and applications. The main attention is paid to the augmented Lagrangian method (ALM) for such problems considered in both exact and inexact forms. Using generalized differential tools of second-order variational analysis, we formulate the corresponding version of second-order sufficiency and use it to establish, among other results, the uniform second-order growth condition for the augmented Lagrangian. The latter allows us to justify the solvability of subproblems in the ALM and to prove the linear primal–dual convergence of this method.

  相似文献   

10.
A Modified Barrier-Augmented Lagrangian Method for Constrained Minimization   总被引:4,自引:0,他引:4  
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modified barrier term and equalities with an augmented Lagrangian term. The MBAL method alternatively minimizes the MBAL function in the primal space and updates the Lagrange multipliers. For a large enough fixed barrier-penalty parameter the MBAL method is shown to converge Q-linearly under the standard second-order optimality conditions. Q-superlinear convergence can be achieved by increasing the barrier-penalty parameter after each Lagrange multiplier update. We consider a dual problem that is based on the MBAL function. We prove a basic duality theorem for it and show that it has several important properties that fail to hold for the dual based on the classical Lagrangian.  相似文献   

11.
In this paper, we propose weak separation functions in the image space for general constrained vector optimization problems on strong and weak vector minimum points. Gerstewitz function is applied to construct a special class of nonlinear separation functions as well as the corresponding generalized Lagrangian functions. By virtue of such nonlinear separation functions, we derive Lagrangian-type sufficient optimality conditions in a general context. Especially for nonconvex problems, we establish Lagrangian-type necessary optimality conditions under suitable restriction conditions, and we further deduce Karush–Kuhn–Tucker necessary conditions in terms of Clarke subdifferentials.  相似文献   

12.
In this paper the pseudo-Lipschitz property of the constraint set mapping and the Lipschitz property of the optimal value function of parametric nonconvex semi-infinite optimization problems are obtained under suitable conditions on the limiting subdifferential and the limiting normal cone. Then we derive sufficient conditions for the strong duality of nonconvex semi-infinite optimality problems and a criterion for exact penalty representations via an augmented Lagrangian approach. Examples are given to illustrate the obtained results.  相似文献   

13.
In the second part of our study, we introduce the concept of global extended exactness of penalty and augmented Lagrangian functions, and derive the localization principle in the extended form. The main idea behind the extended exactness consists in an extension of the original constrained optimization problem by adding some extra variables, and then construction of a penalty/augmented Lagrangian function for the extended problem. This approach allows one to design extended penalty/augmented Lagrangian functions having some useful properties (such as smoothness), which their counterparts for the original problem might not possess. In turn, the global exactness of such extended merit functions can be easily proved with the use of the localization principle presented in this paper, which reduces the study of global exactness to a local analysis of a merit function based on sufficient optimality conditions and constraint qualifications. We utilize the localization principle in order to obtain simple necessary and sufficient conditions for the global exactness of the extended penalty function introduced by Huyer and Neumaier, and in order to construct a globally exact continuously differentiable augmented Lagrangian function for nonlinear semidefinite programming problems.  相似文献   

14.
We develop a new notion of second-order complementarity with respect to the tangent subspace related to second-order necessary optimality conditions by the introduction of so-called tangent multipliers. We prove that around a local minimizer, a second-order stationarity residual can be driven to zero while controlling the growth of Lagrange multipliers and tangent multipliers, which gives a new second-order optimality condition without constraint qualifications stronger than previous ones associated with global convergence of algorithms. We prove that second-order variants of augmented Lagrangian (under an additional smoothness assumption based on the Lojasiewicz inequality) and interior point methods generate sequences satisfying our optimality condition. We present also a companion minimal constraint qualification, weaker than the ones known for second-order methods, that ensures usual global convergence results to a classical second-order stationary point. Finally, our optimality condition naturally suggests a definition of second-order stationarity suitable for the computation of iteration complexity bounds and for the definition of stopping criteria.  相似文献   

15.
Augmented Lagrangian function is one of the most important tools used in solving some constrained optimization problems. In this article, we study an augmented Lagrangian objective penalty function and a modified augmented Lagrangian objective penalty function for inequality constrained optimization problems. First, we prove the dual properties of the augmented Lagrangian objective penalty function, which are at least as good as the traditional Lagrangian function's. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker condition. This is especially so when the Karush-Kuhn-Tucker condition holds for convex programming of its saddle point existence. Second, we prove the dual properties of the modified augmented Lagrangian objective penalty function. For a global optimal solution, when the exactness of the modified augmented Lagrangian objective penalty function holds, its saddle point exists. The sufficient and necessary stability conditions used to determine whether the modified augmented Lagrangian objective penalty function is exact for a global solution is proved. Based on the modified augmented Lagrangian objective penalty function, an algorithm is developed to find a global solution to an inequality constrained optimization problem, and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the modified augmented Lagrangian objective penalty function is proved for a local solution. An algorithm is presented in finding a local solution, with its convergence proved under some conditions.  相似文献   

16.
《Optimization》2012,61(3):521-537
Abstract

Strong second-order conditions in mathematical programming play an important role not only as optimality tests but also as an intrinsic feature in stability and convergence theory of related numerical methods. Besides of appropriate firstorder regularity conditions, the crucial point consists in local growth estimation for the objective which yields inverse stability information on the solution. In optimal control, similar results are known in case of continuous control functions, and for bang–bang optimal controls when the state system is linear. The paper provides a generalization of the latter result to bang–bang optimal control problems for systems which are affine-linear w.r.t. the control but depend nonlinearly on the state. Local quadratic growth in terms of L1 norms of the control variation are obtained under appropriate structural and second-order sufficient optimality conditions.  相似文献   

17.
Stabilized sequential quadratic programming (sSQP) methods for nonlinear optimization generate a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. This paper concerns the local convergence analysis of an sSQP method that uses a line search with a primal-dual augmented Lagrangian merit function to enforce global convergence. The method is provably well-defined and is based on solving a strictly convex quadratic programming subproblem at each iteration. It is shown that the method has superlinear local convergence under assumptions that are no stronger than those required by conventional stabilized SQP methods. The fast local convergence is obtained by allowing a small relaxation of the optimality conditions for the quadratic programming subproblem in the neighborhood of a solution. In the limit, the line search selects the unit step length, which implies that the method does not suffer from the Maratos effect. The analysis indicates that the method has the same strong first- and second-order global convergence properties that have been established for augmented Lagrangian methods, yet is able to transition seamlessly to sSQP with fast local convergence in the neighborhood of a solution. Numerical results on some degenerate problems are reported.  相似文献   

18.
In this paper, the augmented Lagrangian SQP method is considered for the numerical solution of optimization problems with equality constraints. The problem is formulated in a Hilbert space setting. Since the augmented Lagrangian SQP method is a type of Newton method for the nonlinear system of necessary optimality conditions, it is conceivable that q-quadratic convergence can be shown to hold locally in the pair (x, ). Our interest lies in the convergence of the variable x alone. We improve convergence estimates for the Newton multiplier update which does not satisfy the same convergence properties in x as for example the least-square multiplier update. We discuss these updates in the context of parameter identification problems. Furthermore, we extend the convergence results to inexact augmented Lagrangian methods. Numerical results for a control problem are also presented.  相似文献   

19.
Log-Sigmoid Multipliers Method in Constrained Optimization   总被引:10,自引:0,他引:10  
In this paper we introduced and analyzed the Log-Sigmoid (LS) multipliers method for constrained optimization. The LS method is to the recently developed smoothing technique as augmented Lagrangian to the penalty method or modified barrier to classical barrier methods. At the same time the LS method has some specific properties, which make it substantially different from other nonquadratic augmented Lagrangian techniques.We established convergence of the LS type penalty method under very mild assumptions on the input data and estimated the rate of convergence of the LS multipliers method under the standard second order optimality condition for both exact and nonexact minimization.Some important properties of the dual function and the dual problem, which are based on the LS Lagrangian, were discovered and the primal–dual LS method was introduced.  相似文献   

20.
Motivated by our recent works on optimality conditions in discrete optimal control problems under a nonconvex cost function, in this paper, we study second-order necessary and sufficient optimality conditions for a discrete optimal control problem with a nonconvex cost function and state-control constraints. By establishing an abstract result on second-order optimality conditions for a mathematical programming problem, we derive second-order necessary and sufficient optimality conditions for a discrete optimal control problem. Using a common critical cone for both the second-order necessary and sufficient optimality conditions, we obtain “no-gap” between second-order optimality conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号