首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
One concern of many investors is to own the assets which can be liquidated easily. Thus, in this paper, we incorporate portfolio liquidity in our proposed model. Liquidity is measured by an index called turnover rate. Since the return of an asset is uncertain, we present it as a trapezoidal fuzzy number and its turnover rate is measured by fuzzy credibility theory. The desired portfolio turnover rate is controlled through a fuzzy chance constraint. Furthermore, to manage the portfolios with asymmetric investment return, other than mean and variance, we also utilize the third central moment, the skewness of portfolio return. In fact, we propose a fuzzy portfolio mean–variance–skewness model with cardinality constraint which combines assets limitations with liquidity requirement. To solve the model, we also develop a hybrid algorithm which is the combination of cardinality constraint, genetic algorithm, and fuzzy simulation, called FCTPM.  相似文献   

2.
In this paper we examine the problem of managing portfolios consisting of both, stocks and options. For the simultaneous optimization of stock and option positions we base our analysis on the generally accepted mean–variance framework. First, we analyze the effects of options on the mean–variance efficient frontier if they are considered as separate investment alternatives. Due to the resulting asymmetric portfolio return distribution mean–variance analysis will be not sufficient to identify optimal optioned portfolios. Additional investor preferences which are expressed in terms of shortfall constraints allow a more detailed portfolio specification. Under a mean–variance and shortfall preference structure we then derive optioned portfolios with a maximum expected return. To circumvent the technical optimization problems arising from stochastic constraints we use an approximation of the return distribution and develop economically meaningful conditions under which the complex optimization problem can be transformed into a linear problem being comparably easy to solve. Empirical results based on both, empirical market data and Monte Carlo simulations, illustrate the portfolio optimization procedure with options.  相似文献   

3.
A Markowitz-type portfolio selection problem is to minimize a deviation measure of portfolio rate of return subject to constraints on portfolio budget and on desired expected return. In this context, the inverse portfolio problem is finding a deviation measure by observing the optimal mean-deviation portfolio that an investor holds. Necessary and sufficient conditions for the existence of such a deviation measure are established. It is shown that if the deviation measure exists, it can be chosen in the form of a mixed CVaR-deviation, and in the case of n risky assets available for investment (to form a portfolio), it is determined by a combination of (n + 1) CVaR-deviations. In the later case, an algorithm for constructing the deviation measure is presented, and if the number of CVaR-deviations is constrained, an approximate mixed CVaR-deviation is offered as well. The solution of the inverse portfolio problem may not be unique, and the investor can opt for the most conservative one, which has a simple closed-form representation.  相似文献   

4.
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.  相似文献   

5.
Mean-variance-skewness model for portfolio selection with fuzzy returns   总被引:1,自引:0,他引:1  
Numerous empirical studies show that portfolio returns are generally asymmetric, and investors would prefer a portfolio return with larger degree of asymmetry when the mean value and variance are same. In order to measure the asymmetry of fuzzy portfolio return, a concept of skewness is defined as the third central moment in this paper, and its mathematical properties are studied. As an extension of the fuzzy mean-variance model, a mean-variance-skewness model is presented and the corresponding variations are also considered. In order to solve the proposed models, a genetic algorithm integrating fuzzy simulation is designed. Finally, several numerical examples are given to illustrate the modelling idea and the effectiveness of the proposed algorithm.  相似文献   

6.
利用投资收益率的二阶矩作为风险度量函数,建立了考虑背景风险和流动性的模糊投资组合模型.在满足预设收益率、换手率可能性均值要求水平以及风险资产的投资比例等约束条件下,使投资收益的二阶矩最小.最后选取中证100指数成分股中部分股票的历史数据进行数值分析,证明了该模型符合“高收益、高风险”的规律,说明该模型适用于实际金融市场.而且使用二阶矩代替方差作为风险度量函数,克服了方差计算复杂的缺陷,简化了模糊投资组合求解问题.  相似文献   

7.
This paper uses duality to analyze an investor’s behavior in a n-asset portfolio selection problem when the investor has mean variance preferences. The indirect utility and wealth requirement functions are used to derive Roy’s identity, Shephard’s lemma and the Slutsky equation. In our simple Slutsky equation the income effect is characterized by decreasing absolute risk aversion (DARA) and the substitution effect is always positive [negative] with respect to an asset’s holding if the asset’s mean return [risk] increases. Substitution effect and income effect work in the same direction presupposed mean variance preferences display DARA.  相似文献   

8.
This paper solves an optimal portfolio selection problem in the discrete‐time setting where the states of the financial market cannot be completely observed, which breaks the common assumption that the states of the financial market are fully observable. The dynamics of the unobservable market state is formulated by a hidden Markov chain, and the return of the risky asset is modulated by the unobservable market state. Based on the observed information up to the decision moment, an investor wants to find the optimal multi‐period investment strategy to maximize the mean‐variance utility of the terminal wealth. By adopting a sufficient statistic, the portfolio optimization problem with incompletely observable information is converted into the one with completely observable information. The optimal investment strategy is derived by using the dynamic programming approach and the embedding technique, and the efficient frontier is also presented. Compared with the case when the market state can be completely observed, we find that the unobservable market state does decrease the investment value on the risky asset in average. Finally, numerical results illustrate the impact of the unobservable market state on the efficient frontier, the optimal investment strategy and the Sharpe ratio. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The importance of the covariance of returns between capital assets is one of the basic principles of modern portfolio theory. An investor should seek capital assets which have negative covariance of returns, or if such capital assets are not available, capital assets with low covariance should be sought for a portfolio. From the variance-covariance structure of returns of the capital assets and the expected returns for each capital asset, a risk-reward trade-off or efficient frontier can be generated. The trade-off represents the minimum risk, as measured by portfolio variance, that could be incurred to realize a desired rate of return for the portfolio. This concept applies to a portfolio of capital budgeting projects as well as to a portfolio of securities. This paper demonstrates how this concept of portfolio diversification can be applied to a capital budgeting problem. The problem involves an actual problem faced by a U.S. distributor who must decide whether to expand sales into one of two industries. Quadratic programming is used to generate the risk-reward relationships and it is shown that the entry into one industry clearly provides a superior risk-reward relationship than entry into the other industry and compared to the company's present sales policy.  相似文献   

10.
In this paper, we consider a mean–variance portfolio optimization problem for a fuzzy discrete-time insurance risk model. The model consists of independent, identically distributed net losses considered within successive time periods, and incorporates investment incomes from a two-asset portfolio. More precisely, in the beginning of each period, the surplus is invested in both a risk-free bond with fixed interest, and a risky stock with fuzzy return rate. Our purpose is to determine the proportion invested in the stock that maximizes the insurer’s expected wealth, while reducing his risks. Therefore, for this fuzzy model, we formulate mean–variance optimization problems that also include constraints on ruin, and we present a method for determining the resulting optimal proportion to be invested in the risky stock. This method is illustrated in a numerical study in which the fuzzy return rate is considered to be an adaptive fuzzy number that generalizes the well-known trapezoidal fuzzy number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号