首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of nonlinear evolution partial differential equations. In this paper, a class of high-order nonlinear Galerkin methods are provided. Moreover, convergence results with high-order spectral accuracy are derived for the schemes introduced.  相似文献   

2.
The inhomogeneous nonlinear difusion equation is studied by invariant subspace and conditional Lie-Bcklund symmetry methods.It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary diferential equations,which is equivalent to a kind of higher-order conditional Lie-Bcklund symmetries of the equations.As a consequence,a number of new solutions to the inhomogeneous nonlinear difusion equations are constructed explicitly or reduced to solving fnite-dimensional dynamical systems.  相似文献   

3.
This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order to capture discontinuities of the second order derivative uxx of the solution u, three independent functions p1,p2 and p3 are introduced to represent numerical derivatives using various one-sided limits. The proposed DG frame- work, which is based on a nonstandard mixed formulation of the underlying PDE, embeds a nonlinear problem into a mostly linear system of equations where the nonlinearity has been modified to include multiple values of the second order derivative uxz. The proposed framework extends a companion finite difference framework developed by the authors in [9] and allows for the approximation of fully nonlinear PDEs using high order polynomials and non-uniform meshes. In addition to the nonstandard mixed formulation setting, another main idea is to replace the fully nonlinear differential operator by a numerical operator which is consistent with the differential operator and satisfies certain monotonicity (called g-monotonicity) properties. To ensure such a g-monotonicity, the crux of the construction is to introduce the numerical moment, which plays a critical role in the proposed DG frame- work. The g-monotonicity gives the DG methods the ability to select the mathematically "correct" solution (i.e., the viscosity solution) among all possible solutions. Moreover, the g-monotonicity allows for the possible development of more efficient nonlinear solvers as the special nonlinearity of the algebraic systems can be explored to decouple the equations. This paper also presents and analyzes numerical results for several numerical test problems which are used to guage the accuracy and efficiency of the proposed DG methods.  相似文献   

4.
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices at the solution points. For this class of inexact Newton methods, two types of local convergence theorems are proved under proper conditions, and numerical results are given to examine their feasibility and effectiveness. In addition, the advantages of the Newton-HSS methods over the Newton-USOR, the Newton-GMRES and the Newton-GCG methods are shown through solving systems of nonlinear equations arising from the finite difference discretization of a two-dimensional convection-diffusion equation perturbed by a nonlinear term. The numerical implemen- tations also show that as preconditioners for the Newton-GMRES and the Newton-GCG methods the HSS iteration outperforms the USOR iteration in both computing time and iteration step.  相似文献   

5.
In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.  相似文献   

6.
In this paper, we have used the homotopy perturbation and the Adomian decomposition methods to study the nonlinear coupled Kortewge-de Vries and shallow water equations. The main objective of this paper is to propose alternative methods of solutions, which do not require small parameters and avoid linearization and physical unrealistic assumptions. The proposed methods give more general exact solutions without much extra effort and the results reveal that the homotopy perturbation and the Adomian decomposition methods are very effective, convenient and quite accurate to the systems of coupled nonlinear equations.  相似文献   

7.
非线性抛物型方程有限元法数值积分的有效性   总被引:1,自引:0,他引:1  
Abstract. The effect of numerical integration in finite element methods applied to a class of nonlinear parabolic equations is considered and some sufficient conditions on the quadrature scheme to ensure that the order of convergence is unaltered in the presence of numerical integration are given. Optimal Lz and H1 estimates for the error and its time derivative are established.  相似文献   

8.
In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic idea is to add and subtract two equal terms a0 Uxx the right-hand side of the partial differential equation,then to treat the term a0 Uxx implicitly and the other terms(a(U)Ux)x-a0 Uxx explicitly.We give stability analysis for the method on a simplified model by the aid of energy analysis,which gives a guidance for the choice of a0,i.e.,a0≥max{a(u)}/2 to ensure the unconditional stability of the first order and second order schemes.The optimal error estimate is also derived for the simplified model,and numerical experiments are given to demonstrate the stability,accuracy and performance of the schemes for nonlinear diffusion equations.  相似文献   

9.
This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.  相似文献   

10.
Most of existing methods in system identification with possible exception of those for linear systems are off-line in nature, and hence are nonrecursive. This paper demonstrates the recent progress in recursive system identification. The recursive identification algorithms are presented not only for linear systems (multivariate ARMAX systems) but also for nonlinear systems such as the Hammerstein and Wiener systems, and the nonlinear ARX systems. The estimates generated by the algorithms are online updated and converge a.s. to the true values as time tends to infinity.  相似文献   

11.
ONMONOTONECONVERGENCEOFNONLINEARMULTISPLITTINGRELAXATIONMETHODS¥WANGDEREN;BAIZHONGZHI(DepazatmentofMathematics,ShsllghaiUnive...  相似文献   

12.
Based on separable property of the linear and the nonlinear terms and on the Hermitian and skew-Hermitian splitting of the coefficient matrix, we present the Picard-HSS and the nonlinear HSS-like iteration methods for solving a class of large scale systems of weakly nonlinear equations. The advantage of these methods over the Newton and the Newton-HSS iteration methods is that they do not require explicit construction and accurate computation of the Jacobian matrix, and only need to solve linear sub-systems of constant coefficient matrices. Hence, computational workloads and computer memory may be saved in actual implementations. Under suitable conditions, we establish local convergence theorems for both Picard-HSS and nonlinear HSS-like iteration methods. Numerical implementations show that both Picard-HSS and nonlinear HSS-like iteration methods are feasible, effective, and robust nonlinear solvers for this class of large scale systems of weakly nonlinear equations.  相似文献   

13.
Globally convergent nonlinear relaxation methods are considered for a class of nonlinear boundary value problems (BVPs), where the discretizations are continuousM-functions.It is shown that the equations with one variable occurring in the nonlinear relaxation methods can always be solved by Newton's method combined with the Bisection method. The nonlinear relaxation methods are used to get an initial approximation in the domain of attraction of Newton's method. Numerical examples are given.  相似文献   

14.
A three-parameter family of nonlinear conjugate gradient methods   总被引:3,自引:0,他引:3  

In this paper, we propose a three-parameter family of conjugate gradient methods for unconstrained optimization. The three-parameter family of methods not only includes the already existing six practical nonlinear conjugate gradient methods, but subsumes some other families of nonlinear conjugate gradient methods as its subfamilies. With Powell's restart criterion, the three-parameter family of methods with the strong Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the three-parameter family of methods. This paper can also be regarded as a brief review on nonlinear conjugate gradient methods.

  相似文献   


15.
非线性回归方法的应用与比较   总被引:5,自引:0,他引:5  
比较了非线性回归3种方法的数学原理:曲线直线化方法、非线性最小二乘方法、近似非线性法.说明了用方差分析确定回归模型的统计学意义、用决定系数R2描述曲线的拟合效果的理论依据.通过对同一问题用3种方法分析得出结论:非线性回归与近似非线性拟合方法决定系数相近(0.9966与0.9965),而曲线直线化决定系数为0.9738.因为近似非线性拟合方法无需选初值.建议应用近似非线性拟合方法.  相似文献   

16.
In this paper, based on some known fourth-order Steffensen type methods, we present a family of three-step seventh-order Steffensen type iterative methods for solving nonlinear equations and nonlinear systems. For nonlinear systems, a development of the inverse first-order divided difference operator for multivariable function is applied to prove the order of convergence of the new methods. Numerical experiments with comparison to some existing methods are provided to support the underlying theory.  相似文献   

17.
In this paper, a new approach to the model order reduction of nonlinear systems is presented. This approach does not need a simulation of the original system, and therefore, it is suitable for large systems. By separating the linear and nonlinear parts of the original nonlinear model, the idea is to consider the nonlinearities of the resulting system as additional inputs. Based on the linear system from the last step, a known order-reduction method can be applied to find the coefficients of the nonlinear and the linear parts of a reduced-order model. Two different methods from linear-order reduction (balancing and truncation and Eitelberg's method with some modification) are used for this purpose, and their advantages and disadvantages are discussed. For comparison with some known methods in order reduction of nonlinear systems, three other methods are discussed briefly. Finally, a technical nonlinear system is reduced, and different methods are compared.  相似文献   

18.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this article; one is He's variational iteration method (VIM) and the other is the homotopy-perturbation method (HPM). The VIM is to construct correction functionals using general Lagrange multipliers identified optimally via the variational theory, and the initial approximations can be freely chosen with unknown constants. The HPM deforms a difficult problem into a simple problem which can be easily solved. Nonlinear convective–radiative cooling equation, nonlinear heat equation (porous media equation) and nonlinear heat equation with cubic nonlinearity are used as examples to illustrate the simple solution procedures. Comparison of the applied methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

19.
PARALLELNONLINEARMULTISPLITTINGRELAXATIONMETHODSWANGDERENANDBAIZHONGZHI(DepartmentofMathematics,ShanghaiUniversityofSciencean...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号