首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We often have to draw conclusions about states of machines in computer science and about states of knowledge and belief in artificial intelligence (AI) based on partial information. Nerode (1990) suggested using constructive (equivalently, intuitionistic) logic as the language to express such deductions and also suggested designing appropriate intuitionistic Kripke frames to express the partial information. Following this program, Nerode and Wijesekera (1990) developed syntax, semantics and completeness for a system of intuitionistic dynamic logic for proving properties of concurrent programs. Like all dynamics logics, this was a logic of many modalities, each expressing a program, but in intuitionistic rather than in classical logic. In that logic, both box and diamond are needed, but these two are not intuitionistically interdefinable and, worse, diamond does not distribute over ‘or’, except for sequential programs. This also happens in other contemplated computer science and AI applications, and leads outside the class of constructive logics investigated in the literature. The present paper fills this gap. We provide intuitionistic logics with independent box and diamond without assuming distribution of diamond over ‘or’. The completeness theorem is based on intuitionistic Kripke frames (partially ordered sets of increasing worlds), but equipped with an additional, quite separate accessibility relation between worlds. In the interpretation of Nerode and Wijesekera (1990), worlds under the partial order represent states of partial knowledge, the accessibility represents change in state of partial knowledge resulting from executing a specific program. But there are many other computer science interpretations. This formalism covers all computer science applications of which we are aware. We also give a cut elimination theorem and algebraic and topological formulations, since these present some new difficulties. Finally, these results were obtained prior to those in Nerode and Wijesekera (1990).  相似文献   

2.
Brouwer’s views on the foundations of mathematics have inspired the study of intuitionistic logic, including the study of the intuitionistic propositional calculus and its extensions. The theory of these systems has become an independent branch of logic with connections to lattice theory, topology, modal logic, and other areas. This paper aims to present a modern account of semantics for intuitionistic propositional systems. The guiding idea is that of a hierarchy of semantics, organized by increasing generality: from the least general Kripke semantics on through Beth semantics, topological semantics, Dragalin semantics, and finally to the most general algebraic semantics. While the Kripke, topological, and algebraic semantics have been extensively studied, the Beth and Dragalin semantics have received less attention. We bring Beth and Dragalin semantics to the fore, relating them to the concept of a nucleus from pointfree topology, which provides a unifying perspective on the semantic hierarchy.  相似文献   

3.
We extend the theory of unified correspondence to a broad class of logics with algebraic semantics given by varieties of normal lattice expansions (LEs), also known as ‘lattices with operators’. Specifically, we introduce a syntactic definition of the class of Sahlqvist formulas and inequalities which applies uniformly to each LE-signature and is given purely in terms of the order-theoretic properties of the algebraic interpretations of the logical connectives. We also introduce the algorithm ALBA, parametric in each LE-setting, which effectively computes first-order correspondents of LE-inequalities, and is guaranteed to succeed on a wide class of inequalities (the so-called inductive inequalities) which significantly extend the Sahlqvist class. Further, we show that every inequality on which ALBA succeeds is canonical. Projecting these results on specific signatures yields state-of-the-art correspondence and canonicity theory for many well known modal expansions of classical and intuitionistic logic and for substructural logics, from classical poly-modal logics to (bi-)intuitionistic modal logics to the Lambek calculus and its extensions, the Lambek-Grishin calculus, orthologic, the logic of (not necessarily distributive) De Morgan lattices, and the multiplicative-additive fragment of linear logic.  相似文献   

4.
This paper deals with Kripke‐style semantics for many‐valued logics. We introduce various types of Kripke semantics, and we connect them with algebraic semantics. As for modal logics, we relate the axioms of logics extending MTL to properties of the Kripke frames in which they are valid. We show that in the propositional case most logics are complete but not strongly complete with respect to the corresponding class of complete Kripke frames, whereas in the predicate case there are important many‐valued logics like BL, ? and Π, which are not even complete with respect to the class of all predicate Kripke frames in which they are valid. Thus although very natural, Kripke semantics seems to be slightly less powerful than algebraic semantics. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
 The paper studies Barwise's information frames and answers the John Barwise question: to find axiomatizations for the modal logics generated by information frames. We find axiomatic systems for (i) the modal logic of all complete information frames, (ii) the logic of all sound and complete information frames, (iii) the logic of all hereditary and complete information frames, (iv) the logic of all complete, sound and hereditary information frames, and (v) the logic of all consistent and complete information frames. The notion of weak modal logics is also proposed, and it is shown that the weak modal logics generated by all information frames and by all hereditary information frames are K and K4 respectively. To develop general theory, we prove that (i) any Kripke complete modal logic is the modal logic of a certain class of information frames and that (ii) the modal logic generated by any given class of complete, rarefied and fully classified information frames is Kripke complete. This paper is dedicated to the memory of talented mathematician John Barwise. Received: 7 May 2000 Published online: 10 October 2002 Key words or phrases: Knowledge presentation – Information – Information flow – Information frames – Modal logic-Kripke model  相似文献   

6.
We study modal logics based on neighbourhood semantics using methods and theorems having their origin in topological model theory. We thus obtain general results concerning completeness of modal logics based on neighbourhood semantics as well as the relationship between neighbourhood and Kripke semantics. We also give a new proof for a known interpolation result of modal logic using an interpolation theorem of topological model theory.  相似文献   

7.
In this paper we study frame definability in finitely valued modal logics and establish two main results via suitable translations: (1) in finitely valued modal logics one cannot define more classes of frames than are already definable in classical modal logic (cf. [27, Thm. 8]), and (2) a large family of finitely valued modal logics define exactly the same classes of frames as classical modal logic (including modal logics based on finite Heyting and MV-algebras, or even BL-algebras). In this way one may observe, for example, that the celebrated Goldblatt–Thomason theorem applies immediately to these logics. In particular, we obtain the central result from [26] with a much simpler proof and answer one of the open questions left in that paper. Moreover, the proposed translations allow us to determine the computational complexity of a big class of finitely valued modal logics.  相似文献   

8.
In this paper we construct a continuum of logics, extensions of the modal logic T2 = KTB ⊕ □2p → □3p, which are non‐compact (relative to Kripke frames) and hence Kripke incomplete. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The Gödel-McKinsey-Tarski embedding allows to view intuitionistic logic through the lenses of modal logic. In this work, an extension of the modal embedding to infinitary intuitionistic logic is introduced. First, a neighborhood semantics for a family of axiomatically presented infinitary modal logics is given and soundness and completeness are proved via the method of canonical models. The semantics is then exploited to obtain a labelled sequent calculus with good structural properties. Next, soundness and faithfulness of the embedding are established by transfinite induction on the height of derivations: the proof is obtained directly without resorting to non-constructive principles. Finally, the modal embedding is employed in order to relate classical, intuitionistic and modal derivability in infinitary logic extended with axioms.  相似文献   

10.
In this paper we consider distributive modal logic, a setting in which we may add modalities, such as classical types of modalities as well as weak forms of negation, to the fragment of classical propositional logic given by conjunction, disjunction, true, and false. For these logics we define both algebraic semantics, in the form of distributive modal algebras, and relational semantics, in the form of ordered Kripke structures. The main contributions of this paper lie in extending the notion of Sahlqvist axioms to our generalized setting and proving both a correspondence and a canonicity result for distributive modal logics axiomatized by Sahlqvist axioms. Our proof of the correspondence result relies on a reduction to the classical case, but our canonicity proof departs from the traditional style and uses the newly extended algebraic theory of canonical extensions.  相似文献   

11.
This is an investigation of the implications of IPC which remain provable when one weakens intuitionistic logic in various ways. The research is concerned with logics with Kripke models as introduced by G. Corsi in 1987, and others like G. Restall, Do?en, Visser. This leads to conservativity results for IPC with regard to classes of implications in some of these logics. Moreover, similar results are reached for some weaker subintuitionistic systems with neighborhood models introduced by the authors in 2016. In addition, the relationship between two types of neighborhood models introduced in that work is clarified. This clarification leads also to modal companions for weaker logics.  相似文献   

12.
The article studies Barwise's information frames and settles the problem of Barwise dealing in finding axiomatizations for the modal logics generated by information frames. We find axiomatic systems for: (i) the modal logic of all complete information frames; (ii) the logic of all sound and complete information frames; (iii) the logic of all hereditary and complete information frames; (iv) the logic of all complete, sound, and hereditary information frames; (v) the logic of all consistent and complete information frames. The notion of weak modal logics is also proposed, and it is shown that the weak modal logics generated by all information frames and by all hereditary information frames are K and K4, respectively. Toward a general theory, we prove that any Kripke complete modal logic is a modal logic of a certain class of information frames, and that every modal logic generated by any given class of complete, rarefied, and fully classified information frames is Kripke complete.  相似文献   

13.
The paper presents a semantics for quantified modal logic which has a weaker axiomatization than the usual Kripke semantics. In particular, the Barcan Formula (BF) and its converse are not valid with the proposed semantics. Subclasses of models which validate BF and other interesting formulas are presented. A completeness theorem is proved, and the relation between this result and completeness with respect to Kripke models is investigated.  相似文献   

14.
Interpretability logic is a modal formalization of relative interpretability between first-order arithmetical theories. Verbrugge semantics is a generalization of Veltman semantics, the basic semantics for interpretability logic. Bisimulation is the basic equivalence between models for modal logic. We study various notions of bisimulation between Verbrugge models and develop a new one, which we call w-bisimulation. We show that the new notion, while keeping the basic property that bisimilarity implies modal equivalence, is weak enough to allow the converse to hold in the finitary case. To do this, we develop and use an appropriate notion of bisimulation games between Verbrugge models.  相似文献   

15.
We investigate model theoretic characterisations of the expressive power of modal logics in terms of bisimulation invariance. The paradigmatic result of this kind is van Benthem’s theorem, which says that a first-order formula is invariant under bisimulation if, and only if, it is equivalent to a formula of basic modal logic. The present investigation primarily concerns ramifications for specific classes of structures. We study in particular model classes defined through conditions on the underlying frames, with a focus on frame classes that play a major role in modal correspondence theory and often correspond to typical application domains of modal logics. Classical model theoretic arguments do not apply to many of the most interesting classes-for instance, rooted frames, finite rooted frames, finite transitive frames, well-founded transitive frames, finite equivalence frames-as these are not elementary. Instead we develop and extend the game-based analysis (first-order Ehrenfeucht-Fraïssé versus bisimulation games) over such classes and provide bisimulation preserving model constructions within these classes. Over most of the classes considered, we obtain finite model theory analogues of the classically expected characterisations, with new proofs also for the classical setting. The class of transitive frames is a notable exception, with a marked difference between the classical and the finite model theory of bisimulation invariant first-order properties. Over the class of all finite transitive frames in particular, we find that monadic second-order logic is no more expressive than first-order as far as bisimulation invariant properties are concerned — though both are more expressive here than basic modal logic. We obtain ramifications of the de Jongh-Sambin theorem and a new and specific analogue of the Janin-Walukiewicz characterisation of bisimulation invariant monadic second-order for finite transitive frames.  相似文献   

16.
We extend Lawvere-Pitts prop-categories (aka. hyperdoctrines) to develop a general framework for providing fibered algebraic semantics for general first-order logics. This framework includes a natural notion of substitution, which allows first-order logics to be considered as structural closure operators just as propositional logics are in abstract algebraic logic. We then establish an extension of the homomorphism theorem from universal algebra for generalized prop-categories and characterize two natural closure operators on the prop-categorical semantics. The first closes a class of structures (which are interpreted as morphisms of prop-categories) under the satisfaction of their common first-order theory and the second closes a class of prop-categories under their associated first-order consequence. It turns out that these closure operators have characterizations that closely mirror Birkhoff's characterization of the closure of a class of algebras under the satisfaction of their common equational theory and Blok and Jónsson's characterization of closure under equational consequence, respectively. These algebraic characterizations of the first-order closure operators are unique to the prop-categorical semantics. They do not have analogues, for example, in the Tarskian semantics for classical first-order logic. The prop-categories we consider are much more general than traditional intuitionistic prop-categories or triposes (i.e., topos representing indexed partially ordered sets). Nonetheless, to the best of our knowledge, our results are new, even when restricted to these special classes of prop-categories.  相似文献   

17.
In this paper we investigate those extensions of the bimodal provability logic (alias or which are subframe logics, i.e. whose general frames are closed under a certain type of substructures. Most bimodal provability logics are in this class. The main result states that all finitely axiomatizable subframe logics containing are decidable. We note that, as a rule, interesting systems in this class do not have the finite model property and are not even complete with respect to Kripke semantics. Received July 15, 1997  相似文献   

18.
The problem of separability of superintuitionistic propositional logics that are extensions of the intuitionistic propositional logic is studied. A criterion of separability of normal superintuitionistic propositional logics, as well as results concerning the completeness of their subcalculi is obtained. This criterion makes it possible to determine whether a normalizable superintuitionistic propositional logic is separable. By means of these results, the mistakes discovered by the author in the proofs of certain statements by McKay and Hosoi are corrected.Translated fromMatematicheskie Zametki, Vol. 64, No. 4, pp. 606–615, October, 1998.This research was supported by the Russian Foundation for Basic Research under grant No. 94-01-00944.  相似文献   

19.
Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions expressible by one or more geometric implications. Each of these logics is embedded by the G?del–McKinsey–Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the explanation of the rules.  相似文献   

20.
Kripke bundle and C-set semantics are known as semantics which generalize standard Kripke semantics. In [4] and in [1, 2] it is shown that Kripke bundle and C-set semantics are stronger than standard Kripke semantics. Also it is true that C-set semantics for superintuitionistic logics is stronger than Kripke bundle semantics ([6]). Modal predicate logic Q-S4.1 is not Kripke bundle complete ([3] - it is also yielded as a corollary to Theorem 6.1(a) of the present paper). This is shown by using difference of Kripke bundle semantics and C-set semantics. In this paper, by using the same idea we show that incompleteness results in Kripke bundle semantics which are extended versions of [2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号