首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Let G be an outerplanar graph with maximum degree △. Let χ(G^2) and A(G) denote the chromatic number of the square and the L(2, 1)-labelling number of G, respectively. In this paper we prove the following results: (1) χ(G^2) = 7 if △= 6; (2) λ(G) ≤ △ +5 if △ ≥ 4, and ),(G)≤ 7 if △ = 3; and (3) there is an outerplanar graph G with △ = 4 such that )λ(G) = 7. These improve some known results on the distance two labelling of outerplanar graphs.  相似文献   

2.
Let x(G^2) denote the chromatic number of the square of a maximal outerplanar graph G and Q denote a maximal outerplanar graph obtained by adding three chords y1 y3, y3y5, y5y1 to a 6-cycle y1y2…y6y1. In this paper, it is proved that △ + 1 ≤ x(G^2) ≤△ + 2, and x(G^2) = A + 2 if and only if G is Q, where A represents the maximum degree of G.  相似文献   

3.
Let G be an outerplane graph with maximum degree △ and the entire chromatic number χvef (G). This paper proves that if △≥ 6, then △ 1 ≤χvef (G) ≤△ 2,and χvef (G) = △ 1 if and only if G has a matching M consisting of some inner edges which covers all its vertices of maximum degree.  相似文献   

4.
Let σk(G) denote the minimum degree sum of k independent vertices in G and α(G) denote the number of the vertices of a maximum independent set of G. In this paper we prove that if G is a 4-connected graph of order n and σ5(G) 〉 n + 3σ(G) + 11, then G is Hamiltonian.  相似文献   

5.
An invariant σ2(G) of a graph is defined as follows: σ2(G) := min{d(u) + d(v)|u, v ∈V(G),uv ∈ E(G),u ≠ v} is the minimum degree sum of nonadjacent vertices (when G is a complete graph, we define σ2(G) = ∞). Let k, s be integers with k ≥ 2 and s ≥ 4, G be a graph of order n sufficiently large compared with s and k. We show that if σ2(G) ≥ n + k- 1, then for any set of k independent vertices v1,..., vk, G has k vertex-disjoint cycles C1,..., Ck such that |Ci| ≤ s and vi ∈ V(Ci) for all 1 ≤ i ≤ k.
The condition of degree sum σs(G) ≥ n + k - 1 is sharp.  相似文献   

6.
关于图的星色数的一点注记   总被引:1,自引:0,他引:1  
A star coloring of an undirected graph G is a proper coloring of G such that no path of length 3 in G is bicolored.The star chromatic number of an undirected graph G,denoted by χs(G),is the smallest integer k for which G admits a star coloring with k colors.In this paper,we show that if G is a graph with maximum degree △,then χs(G) ≤ [7△3/2],which gets better bound than those of Fertin,Raspaud and Reed.  相似文献   

7.
王维凡 《数学季刊》1996,11(3):19-23
Let G be a maximal outerplane graph and X0(G) the complete chromatic number of G. This paper determines exactly X0(G) for △(G)≠5 and proves 6≤X0.(G)≤7 for △(G) = 5, where △(G) is the maximum degree of vertices of G.  相似文献   

8.
Let G be a graph which can be embedded in a surface of nonnegative Euler characteristic.In this paper,it is proved that the total chromatic number of G is △(G)+1 if △(G)9,where △(G)is the maximum degree of G.  相似文献   

9.
Edge choosability of planar graphs without short cycles   总被引:1,自引:0,他引:1  
In this paper we prove that if G is a planar graph with △= 5 and without 4-cycles or 6-cycles, then G is edge-6-choosable. This consequence together with known results show that, for each fixed k ∈{3,4,5,6}, a k-cycle-free planar graph G is edge-(△ 1)-choosable, where △ denotes the maximum degree of G.  相似文献   

10.
The minimum number of colors needed to properly color the vertices and edges of a graph G is called the total chromatic number of G and denoted by χ’’ (G). It is shown that if a planar graph G has maximum degree Δ≥9, then χ’’ (G) = Δ + 1. In this paper, we prove that if G is a planar graph with maximum degree 8 and without intersecting chordal 4-cycles, then χ ’’(G) = 9.  相似文献   

11.
A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number χ'(G) is the smallest integer k such that G has a total k-coloring. It is known that if a planar graph G has maximum degree Δ≥ 9, then χ'(G) = Δ + 1. In this paper, we prove that if G is a planar graph with maximum degree 8 and without a fan of four adjacent 3-cycles, then χ'(G) = 9.  相似文献   

12.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree Δ has(1)lc(G) ≤Δ 21 if Δ≥ 9; (2)lc(G) ≤「Δ/2」 + 7 ifg ≥ 5; (3) lc(G) ≤「Δ/2」 + 2 ifg ≥ 7 and Δ≥ 7.  相似文献   

13.
A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.  相似文献   

14.
For a graph G, let a(G) denote the maximum size of a subset of vertices that induces a forest. Suppose that G is connected with n vertices, e edges, and maximum degree Δ. Our results include: (a) if Δ ≤ 3, and GK4, then a(G) ≥ n ? e/4 ? 1/4 and this is sharp for all permissible e ≡ 3 (mod 4); and (b) if Δ ≥ 3, then a(G) ≥ α(G) + (n ? α(G))/(Δ ? 1)2. Several problems remain open. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 113–123, 2001  相似文献   

15.
This paper studies the relation between the connectivity and other parameters of a digraph (or graph), namely its order n, minimum degree δ, maximum degree Δ, diameter D, and a new parameter lpi;, 0 ≤ π ≤ δ ? 2, related with the number of short paths (in the case of graphs l0 = ?(g ? 1)/2? where g stands for the girth). For instance, let G = (V,A) be a digraph on n vertices with maximum degree Δ and diameter D, so that nn(Δ, D) = 1 + Δ + Δ 2 + … + ΔD (Moore bound). As the main results it is shown that, if κ and λ denote respectively the connectivity and arc-connectivity of G, . Analogous results hold for graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ?Δ/2? if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.  相似文献   

17.
Let f(Δ,?μ) =?max {χ′(G) | Δ (G) =?Δ,?μ(G) =?μ} where χ′(G), Δ(G) and?μ(G) denote the the chromatic index, the maximum degree and the maximum multiplicity of the multigraph G, respectively. If Δ < 2μ, then Shannon’s bound implies that the gap between f(Δ,?μ) and Vizing’s bound Δ +?μ can be arbitrarily large. In this note, we prove that this is also the case for Δ ≥?2μ (see Theorem 4).  相似文献   

18.
LetGbe a planar graph with maximum degreeΔ.In this paper,we prove that if any4-cycle is not adjacent to ani-cycle for anyi∈{3,4}in G,then the list edge chromatic numberχl(G)=Δand the list total chromatic numberχl(G)=Δ+1.  相似文献   

19.
The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale’s channel assignment problem, which was first explored by Griggs and Yeh. For positive integerpq, the λ p,q -number of graph G, denoted λ(G;p, q), is the smallest span among all integer labellings ofV(G) such that vertices at distance two receive labels which differ by at leastq and adjacent vertices receive labels which differ by at leastp. Van den Heuvel and McGuinness have proved that λ(G;p, q) ≤ (4q-2) Δ+10p+38q-24 for any planar graphG with maximum degree Δ. In this paper, we studied the upper bound of λ p ,q-number of some planar graphs. It is proved that λ(G;p, q) ≤ (2q?1)Δ + 2(2p?1) ifG is an outerplanar graph and λ(G;p,q) ≤ (2q?1) Δ + 6p - 4q - 1 if G is a Halin graph.  相似文献   

20.
Let ?: E(G) → {1, 2, · · ·, k} be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if \(\sum\limits_{e \mathrel\backepsilon u} {\phi \left( e \right)} \ne \sum\limits_{e \mathrel\backepsilon v} {\phi \left( e \right)} \) for each edge uvE(G). The smallest value k for which G has such a coloring is denoted by χΣ(G), which makes sense for graphs containing no isolated edge (we call such graphs normal). It was conjectured by Flandrin et al. that χΣ(G) ≤ Δ(G) + 2 for all normal graphs, except for C5. Let mad(G) = \(\max \left\{ {\frac{{2\left| {E\left( h \right)} \right|}}{{\left| {V\left( H \right)} \right|}}|H \subseteq G} \right\}\) be the maximum average degree of G. In this paper, we prove that if G is a normal graph with Δ(G) ≥ 5 and mad(G) < 3 ? \(\frac{2}{{\Delta \left( G \right)}}\), then χΣ(G) ≤ Δ(G) + 1. This improves the previous results and the bound Δ(G) + 1 is sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号