首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Euclidean Steiner tree problem is to find the tree with minimal Euclidean length spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set (Steiner points). The problem is NP-hard, so polynomial-time heuristics are desired. We present two such heuristics, both of which utilize an efficient method for computing a locally optimal tree with a given topology. The first systematically inserts Steiner points between edges of the minimal spanning tree meeting at angles less than 120 degrees, performing a local optimization at the end. The second begins by finding the Steiner tree for three of the fixed points. Then, at each iteration, it introduces a new fixed point to the tree, connecting it to each possible edge by inserting a Steiner point, and minimizes over all connections, performing a local optimization for each. We present a variety of test cases that demonstrate the strengths and weaknesses of both algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Finding a shortest network interconnecting a given set of points in a metric space is called the Steiner minimum tree problem. The Steiner ratio is the largest lower bound for the ratio between lengths of a Steiner minimum tree and a minimum spanning tree for the same set of points. In this paper, we show that in a metric space, if the Steiner ratio is less than one and finding a Steiner minimum tree for a set of size bounded by a fixed number can be performed in polynomial time, then there exists a polynomialtime heuristic for the Steiner minimum tree problem with performance ratio bigger than the Steiner ratio. It follows that in the Euclidean plane, there exists a polynomial-time heuristic for Steiner minimum trees with performance ratio bigger than . This solves a long-standing open problem.Part of this work was done while this author visited the Department of Computer Science, Princeton University, supported in part by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, under NSF grant STC88-09648, supported in part by NSF grant No. CCR-8920505, and also supported in part by the National Natural Science Foundation of China.  相似文献   

3.
4.
Approximations for Steiner Trees with Minimum Number of Steiner Points   总被引:1,自引:0,他引:1  
Given n terminals in the Euclidean plane and a positive constant, find a Steiner tree interconnecting all terminals with the minimum number of Steiner points such that the Euclidean length of each edge is no more than the given positive constant. This problem is NP-hard with applications in VLSI design, WDM optical networks and wireless communications. In this paper, we show that (a) the Steiner ratio is 1/ 4, that is, the minimum spanning tree yields a polynomial-time approximation with performance ratio exactly 4, (b) there exists a polynomial-time approximation with performance ratio 3, and (c) there exists a polynomial-time approxi-mation scheme under certain conditions.  相似文献   

5.
The problem of constructing Steiner minimal trees in the Euclidean plane is NP-hard. When in addition obstacles are present, difficulties of constructing obstacle-avoiding Steiner minimal trees are compounded. This problem, which has many obvious practical applications when designing complex transportation and distribution systems, has received very little attention in the literature. The construction of Steiner minimal trees for three terminal points in the Euclidean plane (without obstacles) has been completely solved (among others by Fermat, Torricelli, Cavallieri, Simpson, Heinen) during the span of the last three centuries. This construction is a cornerstone for both exact algorithms and heuristics for the Euclidean Steiner tree problem with arbitrarily many terminal points. An algorithm for three terminal points in the presence of one polygonal convex obstacle is given. It is shown that this algorithm has the worst-case time complexityO(n), wheren is the number of extreme points on the obstacle. As an extension to the underlying algorithm, if the obstacle is appropriately preprocessed inO(n) time, we can solve any problem instance with three arbitrary terminal points and the preprocessed convex polygonal obstacle inO(logn) time. We believe that the three terminal points algorithm will play a critical role in the development of heuristics for problem instances with arbitrarily many terminal points and obstacles.  相似文献   

6.
 The Steiner tree problem on surfaces is more complicated than the corresponding one in the Euclidean plane. There are not many results on it to date. In this paper we first make a comparison of Steiner minimal trees on general curved surfaces with Steiner minimal trees in the Euclidean plane. Then, we focus our study on the Steiner trees on spheres. In particular, we detail the properties of locally minimal Steiner points, and the Steiner points for spherical triangles. Received: August 18, 1997 Final version received: March 16, 1998  相似文献   

7.
Ivanov  A. O.  Tuzhilin  A. A.  Cieslik  D. 《Mathematical Notes》2003,74(3-4):367-374
The Steiner ratio characterizes the greatest possible deviation of the length of a minimal spanning tree from the length of the minimal Steiner tree. In this paper, estimates of the Steiner ratio on Riemannian manifolds are obtained. As a corollary, the Steiner ratio for flat tori, flat Klein bottles, and projective plane of constant positive curvature are computed.  相似文献   

8.
Steiner最小树问题是组合优化中经典的NP难题,在许多实际问题中有着广泛的应用,而三维欧氏Steiner最小树问题是对二维欧氏Steiner最小树问题的推广。由于三维欧氏Steiner树问题的求解非常困难,至今为止的相关成果较为少见。本文针对该问题,利用Delaunay四面体网格剖分技术,提出了一种混合型智能求解方法,不仅可以尽量避免拓扑结构陷入局部最优,且对较大规模的问题求解亦有良好的效果。算法在Matlab环境下编程实现,经实例测试,获得了满意的效果。  相似文献   

9.
The Steiner problem in a λ-plane is the problem of constructing a minimum length network interconnecting a given set of nodes (called terminals), with the constraint that all line segments in the network have slopes chosen from λ uniform orientations in the plane. This network is referred to as a minimum λ-tree. The problem is a generalization of the classical Euclidean and rectilinear Steiner tree problems, with important applications to VLSI wiring design.A λ-tree is said to be locally minimal if its length cannot be reduced by small perturbations of its Steiner points. In this paper we prove that a λ-tree is locally minimal if and only if the length of each path in the tree cannot be reduced under a special parallel perturbation on paths known as a shift. This proves a conjecture on necessary and sufficient conditions for locally minimal λ-trees raised in [M. Brazil, D.A. Thomas, J.F. Weng, Forbidden subpaths for Steiner minimum networks in uniform orientation metrics, Networks 39 (2002) 186-222]. For any path P in a λ-tree T, we then find a simple condition, based on the sum of all angles on one side of P, to determine whether a shift on P reduces, preserves, or increases the length of T. This result improves on our previous forbidden paths results in [M. Brazil, D.A. Thomas, J.F. Weng, Forbidden subpaths for Steiner minimum networks in uniform orientation metrics, Networks 39 (2002) 186-222].  相似文献   

10.
ASteiner tree problem on the plane is that of finding a minimum lengthSteiner tree connecting a given setK ofterminals and lying within a given regionR of the Euclidean plane; it includes as special cases the Euclidean Steiner minimal tree problem (ESMT), the rectilinear Steiner tree problem (RST), and the Steiner tree problem on graphs (STG). ASteiner hull forK inR generically refers to any subregion ofR known to contain a Steiner tree. This paper gives a survey of the role of Steiner hulls in the Steiner tree problem. The significance of Steiner hulls in the efficient solution of Steiner tree problems is outlined, and then a compendium is given of the known Steiner hull constructions for ESMT, RST, and STG problems.  相似文献   

11.
It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least 3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees.  相似文献   

12.
This paper is concerned with the Steiner ratio. A number of properties about the structure of the flat sausage and -Sausage convex polytopes yielding the best Steiner ratio in two- and three-dimensional Euclidean space, and the topology of the Steiner Minimal Tree for the corresponding vertex sets, are presented.  相似文献   

13.
LetG=(V, E) be a graph andTV be a node set. We call an edge setS a Steiner tree forT ifS connects all pairs of nodes inT. In this paper we address the following problem, which we call the weighted Steiner tree packing problem. Given a graphG=(V, E) with edge weightsw e , edge capacitiesc e ,eE, and node setT 1,…,T N , find edge setsS 1,…,S N such that eachS k is a Steiner tree forT k , at mostc e of these edge sets use edgee for eacheE, and the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from a routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the Steiner tree packing problem from a polyhedral point of view and define an associated polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to (partially) describe this polyhedron by means of inequalities. It turns out that, under mild assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of inequalities we have found form the basis of a branch & cut algorithm. This algorithm is described in our companion paper (in this issue).  相似文献   

14.
While the Steiner problem has been extensively studied in the Euclidean plane, it remains an open problem to solve the Steiner problem on arbitrary non-planar (piecewise smooth) surfaces. We suggest an algorithm for solving the n-point Steiner problem on surfaces of revolution which have a non-decreasing generating function by constructing an isometric framework on a plane endowed with a weighted distance metric, thus propelling a new analytical avenue for studying the Steiner problem on surfaces with non-constant curvature.  相似文献   

15.
It was conjectured by Gilbert and Pollak [6] that, for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least . To date, this has been proved only for at most five points. In this paper, some analytic formulas for the length of full Steiner trees are considered. These provide an alternative proof of the conjecture for quadrilaterals, and the foundation for a possible approach for more complicated polygons.  相似文献   

16.
We present a method of determining upper and lower bounds for the length of a Steiner minimal tree in 3-space whose topology is a given full Steiner topology, or a degenerate form of that full Steiner topology. The bounds are tight, in the sense that they are exactly satisfied for some configurations. This represents the first nontrivial lower bound to appear in the literature. The bounds are developed by first studying properties of Simpson lines in both two and three dimensional space, and then introducing a class of easily constructed trees, called midpoint trees, which provide the upper and lower bounds. These bounds can be constructed in quadratic time. Finally, we discuss strategies for improving the lower bound.Supported by a grant from the Australia Research Council.  相似文献   

17.
We consider the problem of finding a minimum spanning and Steiner tree for a set of n points in the plane where the orientations of edge segments are restricted to λ uniformly distributed orientations, λ=2,3,4,… , and where the coordinate system can be rotated around the origin by an arbitrary angle. The most important cases with applications in VLSI design arise when λ=2 or λ=4. In the former, so-called rectilinear case, the edge segments have to be parallel to one of the coordinate axes, and in the latter, so-called octilinear case, the edge segments have to be parallel to one of the coordinate axes or to one of the lines making 45° with the coordinate axes (so-called diagonals). As the coordinate system is rotated—while the points remain stationary—the length and indeed the topology of the minimum spanning or Steiner tree changes. We suggest a straightforward polynomial-time algorithm to solve the rotational minimum spanning tree problem. We also give a simple algorithm to solve the rectilinear Steiner tree problem in the rotational setting, and a finite time algorithm for the general Steiner tree problem with λ uniform orientations. Finally, we provide some computational results indicating the average savings for different values of n and λ both for spanning and Steiner trees.  相似文献   

18.
We study a variational problem for the perimeter associated with the Grushin plane, called minimal partition problem with trace constraint. This consists in studying how to enclose three prescribed areas in the Grushin plane, using the least amount of perimeter, under an additional “one-dimensional” constraint on the intersections of their boundaries. We prove existence of regular solutions for this problem, and we characterize them in terms of isoperimetric sets, showing differences with the Euclidean case. The problem arises from the study of quantitative isoperimetric inequalities and has connections with the theory of minimal clusters.  相似文献   

19.
Given n terminals in the Euclidean plane and a positive constant l, find a Steiner tree T interconnecting all terminals with the minimum total cost of Steiner points and a specific material used to construct all edges in T such that the Euclidean length of each edge in T is no more than l. In this paper, according to the cost b of each Steiner point and the different costs of some specific materials with the different lengths, we study two variants of the Steiner tree problem in the Euclidean plane as follows: (1) If a specific material to construct all edges in such a Steiner tree has its infinite length and the cost of per unit length of such a specific material used is c 1, the objective is to minimize the total cost of the Steiner points and such a specific material used to construct all edges in T, i.e., ${{\rm min} \{b \cdot k_1+ c_1 \cdot \sum_{e \in T} w(e)\}}$ , where T is a Steiner tree constructed, k 1 is the number of Steiner points and w(e) is the length of part cut from such a specific material to construct edge e in T, and we call this version as the minimum-cost Steiner points and edges problem (MCSPE, for short). (2) If a specific material to construct all edges in such a Steiner tree has its finite length L (l ≤ L) and the cost of per piece of such a specific material used is c 2, the objective is to minimize the total cost of the Steiner points and the pieces of such a specific material used to construct all edges in T, i.e., ${{\rm min} \{b \cdot k_2+ c_2 \cdot k_3\}}$ , where T is a Steiner tree constructed, k 2 is the number of Steiner points in T and k 3 is the number of pieces of such a specific material used, and we call this version as the minimum-cost Steiner points and pieces of specific material problem (MCSPPSM, for short). These two variants of the Steiner tree problem are NP-hard with some applications in VLSI design, WDM optical networks and wireless communications. In this paper, we first design an approximation algorithm with performance ratio 3 for the MCSPE problem, and then present two approximation algorithms with performance ratios 4 and 3.236 for the MCSPPSM problem, respectively.  相似文献   

20.
This is the second part of two papers addressing the study of the facial structure of the Steiner tree polyhedron. In this paper we identify several classes of facet defining inequalities and relate them to special classes of graphs on which the Steiner tree problem is known to be NP-hard.Corresponding author.The author appreciates partial support from National Science Foundation Grants Nos. DSM-8606188 and ECS 8800281.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号