首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove that the maximal dimension of a p-central subspace of the generic symbol p-algebra of prime degree p is \({p+1}\). We do it by proving the following number theoretic fact: let \({\{s_1,\dots,s_{p+1}\}}\) be \({p+1}\) distinct nonzero elements in the additive group \({G=(\mathbb{Z}/p \mathbb{Z}) \times (\mathbb{Z}/p \mathbb{Z})}\), then every nonzero element \({g \in G}\) can be expressed as \({d_1 s_1+\dots+d_{p+1} s_{p+1}}\) for some non-negative integers \({d_1,\dots,d_{p+1}}\) with \({d_1+\dots+d_{p+1}\leq p-1}\).  相似文献   

2.
We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal Lp-regularity of the periodic Laplace and Stokes operators and a local-intime existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group \(G: = \mathbb{R}^{n - 1} \times \mathbb{R}/L\mathbb{Z}\) to obtain an R-bound for the resolvent estimate. Then, Weis’ theorem connecting R-boundedness of the resolvent with maximal Lp regularity of a sectorial operator applies.  相似文献   

3.
Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access network for 2-dimensional image transmission. There is a one-to-one correspondence between an \((m, n, w, \lambda )\)-OOSPC and a \((\lambda +1)\)-(mnw, 1) packing design admitting an automorphism group isomorphic to \(\mathbb {Z}_m\times \mathbb {Z}_n\). In 2010, Sawa gave a construction of an (mn, 4, 2)-OOSPC from a one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) which contains a unique element of order 2. In this paper, we study the existence of one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) having three elements of order 2. It is proved that there is a one-factor in the Köhler graph of \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\) relative to the Sylow 2-subgroup if there is an S-cyclic Steiner quadruple system of order 2p, where \(p\equiv 5\pmod {12}\) is a prime and \(1\le \epsilon ,\epsilon '\le 2\). Using this one-factor, we construct a strictly \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\)-invariant regular \(G^*(p,2^{\epsilon +\epsilon '},4,3)\) relative to the Sylow 2-subgroup. By using the known S-cyclic SQS(2p) and a recursive construction for strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant regular G-designs, we construct more strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant 3-(mn, 4, 1) packing designs. Consequently, there is an optimal \((2^{\epsilon }m,2^{\epsilon '}n,4,2)\)-OOSPC for any \(\epsilon ,\epsilon '\in \{0,1,2\}\) with \(\epsilon +\epsilon '>0\) and an optimal (6m, 6n, 4, 2)-OOSPC where mn are odd integers whose all prime divisors from the set \(\{p\equiv 5\pmod {12}:p\) is a prime, \(p<\)1,500,000}.  相似文献   

4.
Let A 1 be an Azumaya algebra over a smooth affine symplectic variety X over Spec F p , where p is an odd prime. Let A be a deformation quantization of A 1 over the p-adic integers. In this note we show that for all n ≥ 1, the Hochschild cohomology of A/p n A is isomorphic to the de Rham-Witt complex \(W_{n}{\Omega }^{\ast }_{X}\) of X over \(\mathbb {Z}/p^{n}\mathbb {Z}\). We also compute the center of deformations of certain affine Poisson varieties over F p .  相似文献   

5.
In this paper, we consider the non-autonomous modified Korteweg-de Vries (mKdV) equation
$${u_t} = {u_{xxx}} - 6f\left( {\omega t} \right){u^2}{u_x},x \in \mathbb{R}/2\pi \mathbb{Z}$$
, where f(ωt) is real analytic and quasi-periodic in t with frequency vector ω = (ω1,ω2, · · ·; ω m ). Basing on an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, we obtain the existence of Cantor families of smooth quasi-periodic solutions.
  相似文献   

6.
We develop conditions on a Sobolev function \(\psi \in W^{m,p}({\mathbb{R}}^d)\) such that if \(\widehat{\psi}(0) = 1\) and ψ satisfies the Strang–Fix conditions to order m ? 1, then a scale averaged approximation formula holds for all \(f \in W^{m,p}({\mathbb{R}}^d)\) :
$ f(x) = \lim_{J \to \infty} \frac{1}{J} \sum_{j=1}^{J} \sum_{k \in {{\mathbb{Z}}}^d} c_{j,k}\psi(a_j x - k) \quad {\rm in} W^{m, p}({{\mathbb{R}}}^d).$
The dilations { a j } are lacunary, for example a j =  2 j , and the coefficients c j,k are explicit local averages of f, or even pointwise sampled values, when f has some smoothness. For convergence just in \({W^{m - 1,p}({\mathbb{R}}^d)}\) the scale averaging is unnecessary and one has the simpler formula \(f(x) = \lim_{j \to \infty} \sum_{k \in {\mathbb{Z}}^d} c_{j,k}\psi(a_j x - k)\) . The Strang–Fix rates of approximation are recovered. As a corollary of the scale averaged formula, we deduce new density or “spanning” criteria for the small scale affine system \(\{\psi(a_j x - k) : j > 0, k \in {\mathbb{Z}}^d \}\) in \(W^{m,p}({\mathbb{R}}^d)\) . We also span Sobolev space by derivatives and differences of affine systems, and we raise an open problem: does the Gaussian affine system span Sobolev space?
  相似文献   

7.
Let M n (n ? 3) be a complete Riemannian manifold with sec M ? 1, and let \(M_i^{n_i }\) (i = 1, 2) be two complete totally geodesic submanifolds in M. We prove that if n1 + n2 = n ? 2 and if the distance |M1M2| ? π/2, then M i is isometric to \(\mathbb{S}^{n_i } /\mathbb{Z}_h\), \(\mathbb{C}P^{n_i /2}\), or \(\mathbb{C}P^{n_i /2} /\mathbb{Z}_2 \) with the canonical metric when n i > 0; and thus, M is isometric to S n /? h , ?Pn/2, or ?Pn/2/?2 except possibly when n = 3 and \(M_1 (or M_2 )\mathop \cong \limits^{iso} \mathbb{S}^1 /\mathbb{Z}_h \) with h ? 2 or n = 4 and \(M_1 (or M_2 )\mathop \cong \limits^{iso} \mathbb{R}P^2 \).  相似文献   

8.
For \(F = \mathbb{Q}\left( {\sqrt {\varepsilon pq} } \right)\), ? ∈ {±1, ±2}, primes ?pq ≡ 1 mod 4, we give the necessary and sufficient conditions for 8-ranks of narrow class groups of F equal to 1 or 2 such that we can calculate their densities. All results are stated in terms of congruence relations of p, q modulo 2 n , the quartic residue symbol \(\left( {\frac{p}{q}} \right)_4\) and binary quadratic forms such as q h(?2p)/4 = x 2 + 2py 2, where h(?2p) is the class number of \(\mathbb{Q}\left( {\sqrt { - 2p} } \right)\). The results are very useful for numerical computations.  相似文献   

9.
Suppose that \(G =\mathbb{S}^1\) acts freely on a finitistic space X whose (mod p) cohomology ring is isomorphic to that of a lens space \(L^{2m-1}(p;q_1,\ldots,q_m)\) or \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). The mod p index of the action is defined to be the largest integer n such that α n ?≠?0, where \(\alpha \,\epsilon\, H^2(X/G;\mathbb{Z}_p)\) is the nonzero characteristic class of the \(\mathbb{S}^1\)-bundle \(\mathbb{S}^1\hookrightarrow X\rightarrow X/G\). We show that the mod p index of a free action of G on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\) is p???1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free G-action on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). It is note worthy that the mod p index for free G-actions on the cohomology lens space is not defined.  相似文献   

10.
A finite p-group P is called resistant if, for any finite group G having P as a Sylow p-group, the normalizer N G (P) controls p-fusion in G. Let P be a central extension as
$$1 \to {\mathbb{Z}_{{p^m}}} \to P \to {\mathbb{Z}_p} \times \cdots {\mathbb{Z}_p} \to 1,$$
and |P′| ≤ p, m ≥ 2. The purpose of this paper is to prove that P is resistant.
  相似文献   

11.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

12.
In this article we continue the development of methods of estimating n-widths and entropy of multiplier operators begun in 1992 by A. Kushpel (Fourier Series and Their Applications, pp. 49–53, 1992; Ukr. Math. J. 45(1):59–65, 1993). Our main aim is to give an unified treatment for a wide range of multiplier operators Λ on symmetric manifolds. Namely, we investigate entropy numbers and n-widths of decaying multiplier sequences of real numbers \(\varLambda=\{\lambda_{k}\}_{k=1}^{\infty}\), |λ 1|≥|λ 2|≥?, \(\varLambda:L_{p}(\mathbb{M}^{d}) \rightarrow L_{q}(\mathbb{M}^{d})\) on two-point homogeneous spaces \(\mathbb{M}^{d}\): \(\mathbb{S}^{d}\), ? d (?), ? d (?), ? d (?), ?16(Cay). In the first part of this article, general upper and lower bounds are established for entropy and n-widths of multiplier operators. In the second part, different applications of these results are presented. In particular, we show that these estimates are order sharp in various important situations. For example, sharp order estimates are found for function sets with finite and infinite smoothness. We show that in the case of finite smoothness (i.e., |λ k |?k ?γ (lnk), γ/d>1, ζ≥0, k→∞), we have \(e_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d})) \ll d_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d}))\), n→∞, but in the case of infinite smoothness (i.e., \(|\lambda_{k}| \asymp e^{-\gamma k^{r}}\), γ>0, 0<r≤1, k→∞), we have \(e_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d})) \gg d_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d}))\), n→∞ for different p and q, where \(U_{p}(\mathbb{S}^{d})\) denotes the closed unit ball of \(L_{p}(\mathbb{S}^{d})\).  相似文献   

13.
This paper studies the cardinal interpolation operators associated with the general multiquadrics, ? α, c (x)=(∥x2 + c 2) α , \(x\in \mathbb {R}^{d}\). These operators take the form
$$\mathcal{I}_{\alpha,c}\mathbf{y}(x) = \sum\limits_{j\in\mathbb{Z}^{d}}y_{j}L_{\alpha,c}(x-j),\quad\mathbf{y}=(y_{j})_{j\in\mathbb{Z}^{d}},\quad x\in\mathbb{R}^{d}, $$
where L α, c is a fundamental function formed by integer translates of ? α, c which satisfies the interpolatory condition \(L_{\alpha ,c}(k) = \delta _{0,k},\; k\in \mathbb {Z}^{d}\). We consider recovery results for interpolation of bandlimited functions in higher dimensions by limiting the parameter \(c\to \infty \). In the univariate case, we consider the norm of the operator \(\mathcal {I}_{\alpha ,c}\) acting on ? p spaces as well as prove decay rates for L α, c using a detailed analysis of the derivatives of its Fourier transform, \(\widehat {L_{\alpha ,c}}\).
  相似文献   

14.
We show that for every finitely presented pro-p nilpotent-by-abelian-by-finite group G there is an upper bound on \({\dim _{{\mathbb{Q}_p}}}\left( {{H_1}\left( {M,{\mathbb{Z}_p}} \right){ \otimes _{{\mathbb{Z}_p}}}{\mathbb{Q}_p}} \right)\), as M runs through all pro-p subgroups of finite index in G.  相似文献   

15.
Given a continuous function\(f:\mathbb{S}^{n - 1} \to \mathbb{R}^m \) andn ?m + 1 pointsp 1, …,p n?m + 1 ε\(p_1 ,...,p_{n - m + 1} \in \mathbb{S}^{n - 1} \), does there exist a rotation ? εSO(n) such thatf(?(p 1)) = … =f(?(p n?m+1))? We give a negative answer to this question form = 1 ifn ε {61, 63, 65} orn≥67 and form=2 ifn≥5.  相似文献   

16.
We give explicit analytic criteria for two problems associated with the Schrödinger operator H=-Δ+Q on L2(? n ) where QD’(? n ) is an arbitrary real- or complex-valued potential.
First, we obtain necessary and sufficient conditions on Q so that the quadratic form \(\langle{Q}\cdot,\ \cdot\rangle\) has zero relative bound with respect to the Laplacian. For QL1loc(? n ), this property can be expressed in the form of the integral inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2 Q(x) dx \right\vert\leq\epsilon\| \nabla u \|^2_{L^2(\mathbb{R}^n)} + C(\epsilon) \|u \|^2_{L^2(\mathbb{R}^n)}, \quad\forall u \in C^{\infty}_0(\mathbb{R}^n),$
for an arbitrarily small ε>0 and some C(ε)>0. One of the major steps here is the reduction to a similar inequality with nonnegative function \(|\nabla(1-\Delta)^{-1} Q|^2 + |(1-\Delta)^{-1} Q|\) in place of Q. This provides a complete solution to the infinitesimal form boundedness problem for the Schrödinger operator, and leads to new broad classes of admissible distributional potentials Q, which extend the usual L p and Kato classes, as well as those based on the well-known conditions of Fefferman–Phong and Chang–Wilson–Wolff.
Secondly, we characterize Trudinger’s subordination property where C(ε) in the above inequality is subject to the condition C(ε)≤cε(β>0) as ε→+0. Such quadratic form inequalities can be understood entirely in the framework of Morrey–Campanato spaces, using mean oscillations of \(\nabla(1-\Delta)^{-1}Q\) and \((1-\Delta)^{-1}Q\) on balls or cubes. A version of this condition where ε∈(0,+∞) is equivalent to the multiplicative inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2Q(x)dx\right\vert\leq{C}\|\nabla{u}\|^{2p}_{L^2(\mathbb{R}^n)}\|u\|^{2(1-p)}_{L^2(\mathbb{R}^n)},\quad\forall{u}\in{C}^\infty_0(\mathbb{R}^n),$
with \(p=\frac\beta{1 + \beta}\in(0,1)\). We show that this inequality holds if and only if \(\nabla\Delta^{-1} Q \in{BMO}(\mathbb{R}^n)\) if \(p=\frac{1}{2}\). For \(0 < p < \frac{1}{2}\), it is valid whenever \(\nabla\Delta^{-1}Q\) is Hölder-continuous of order 1-2p, or respectively lies in the Morrey space \(\mathcal{L}^{2,\lambda}\) with λ=n+2-4p if \(\frac{1}{2} < p < 1\). As a consequence, we characterize completely the class of those Q which satisfy an analogous multiplicative inequality of Nash’s type, with \(\|u\|_{L^1(\mathbb{R}^n)}\) in placeof \(\|u\|_{L^2(\mathbb{R}^n)}\).
These results are intimately connected with spectral theory and dynamics of the Schrödinger operator, and elliptic PDE theory.  相似文献   

17.
In this paper we study the L p boundary value problems for \({\mathcal{L}(u)=0}\) in \({\mathbb{R}^{d+1}_+}\) , where \({\mathcal{L}=-{\rm div} (A\nabla )}\) is a second order elliptic operator with real and symmetric coefficients. Assume that A is periodic in x d+1 and satisfies some minimal smoothness condition in the x d+1 variable, we show that the L p Neumann and regularity problems are uniquely solvable for 1 < p < 2 + δ. We also present a new proof of Dahlberg’s theorem on the L p Dirichlet problem for 2 ? δ < p < ∞ (Dahlberg’s original unpublished proof is given in the Appendix). As the periodic and smoothness conditions are imposed only on the x d+1 variable, these results extend directly from \({\mathbb{R}^{d+1}_+}\) to regions above Lipschitz graphs. Consequently, by localization techniques, we obtain uniform L p estimates for the Dirichlet, Neumann and regularity problems on bounded Lipschitz domains for a family of second order elliptic operators arising in the theory of homogenization. The results on the Neumann and regularity problems are new even for smooth domains.  相似文献   

18.
Miloš S. Kurilić 《Order》2017,34(2):235-251
For a partial order \(\mathbb {P}\) having infinite antichains by \(\mathfrak {a}(\mathbb {P})\) we denote the minimal cardinality of an infinite maximal antichain in \(\mathbb {P}\) and investigate how does this cardinal invariant of posets behave in finite products. In particular we show that \(\min \{ \mathfrak {a}(\mathbb {P}),\mathfrak {p} (\text {sq} \mathbb {P}) \} \leq \mathfrak {a} (\mathbb {P}^{n} ) \leq \mathfrak {a} (\mathbb {P})\), for all \(n\in \mathbb {N}\), where \(\mathfrak {p} (\text {sq} \mathbb {P})\) is the minimal size of a centered family without a lower bound in the separative quotient of the poset \(\mathbb {P}\), or \(\mathfrak {p} (\text {sq} \mathbb {P})=\infty \), if there is no such family. So we have \(\mathfrak {a} (\mathbb {P} \times \mathbb {P})=\mathfrak {a} (\mathbb {P})\) whenever \(\mathfrak {p} (\text {sq} \mathbb {P})\geq \mathfrak {a} (\mathbb {P})\) and we show that, in addition, this equality holds for all posets obtained from infinite Boolean algebras of size ≤ø 1 by removing zero, all reversed trees, all atomic posets and, in particular, for all posets of the form \(\langle \mathcal {C} ,\subset \rangle \), where \(\mathcal {C}\) is a family of nonempty closed sets in a compact T 1-space containing all singletons. As a by-product we obtain the following combinatorial statement: If X is an infinite set and {A i ×B i :iI} an infinite partition of the square X 2, then at least one of the families {A i :iI} and {B i :iI} contains an infinite partition of X.  相似文献   

19.
We discuss three interrelated extremal problems on the set P n,m of algebraic polynomials of a given degree n on the unit sphere \(\mathbb{S}^{m - 1}\) of the Euclidean space ? m of dimension m ≥ 2. (1) Find the norm of the functional \(F\left( \eta \right) = F_h P_n = \int_{\mathbb{G}\left( \eta \right)} {P_n (x)dx}\), which is the integral over the spherical layer \(\mathbb{G}\left( \eta \right) = \left\{ {x = \left( {x_1 , \ldots ,x_m } \right) \in \mathbb{S}^{m - 1} :h' \leqslant x_m \leqslant h''} \right\}\) defined by a pair of real numbers η = (h′, h″), ?1 ≤ h′ < h″ ≤ 1, on the set P n,m with the norm of the space \(L\left( {\mathbb{S}^{m - 1} } \right)\) of functions summable on the sphere. (2) Find the best approximation in \(L_\infty \left( {\mathbb{S}^{m - 1} } \right)\) of the characteristic function χ η of the layer \(\mathbb{G}\left( \eta \right)\) by the subspace P n,m of functions from \(L_\infty \left( {\mathbb{S}^{m - 1} } \right)\) that are orthogonal to the space of polynomials P n,m . (3) Find the best approximation in the space \(L\left( {\mathbb{S}^{m - 1} } \right)\) of the function χ η by the space of polynomials P n,m . We present a solution of all three problems for the values h′ and h″ that are neighboring roots of the polynomial in a single variable of degree n + 1 that deviates least from zero in the space L 1 φ (?1, 1) of functions summable on the interval (?1, 1) with ultraspherical weight φ(t) = (1 ? t 2) α , α = (m ? 3)/2. We study the respective one-dimensional problems in the space of functions summable on (?1, 1) with an arbitrary not necessarily ultraspherical weight.  相似文献   

20.
In the space L 2(?2), we consider the operator
$H = \left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }} - x_2 } \right)^2 + \left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }} + x_1 } \right)^2 + V,V = V(x) \in L_2 (\mathbb{R}^2 ).$
. We study the spectrum of H and, for VC 0 2 (?2), prove the trace formula
$\sum\limits_{k = 0}^\infty {\left( {\sum\limits_{i = - k}^\infty {(4k + 2 - \mu _k^{(i)} ) + c_0 } } \right)} = \frac{1}{{8\pi }}\int\limits_{\mathbb{R}^2 } {V^2 (x)dx,} $
where c 0 = π ?1 \(\smallint _{\mathbb{R}^2 } \) V(x) dx and the µ k (i) are the eigenvalues of H.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号