首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we reinvestigate the trust-region method by reformulating its subproblem: the trust-region radius is guided by gradient information at the current iteration and is self-adaptively adjusted. A trust-region algorithm based on the proposed subproblem is proved to be globally convergent. Moreover, the superlinear convergence of the new algorithm is shown without the condition that the Hessian of the objective function at the solution be positive definite. Preliminary numerical results indicate that the performance of the new method is notable. The authors thank the Associate Editor and two anonymous referees for valuable comments and suggestions. This work was supported by the National Science Foundation of China, Grant 70302003. Communicated by T. Rapcsak  相似文献   

2.
解新锥模型信赖域子问题的折线法   总被引:1,自引:0,他引:1  
本文以新锥模型信赖域子问题的最优性条件为理论基础,认真讨论了新子问题的锥函数性质,分析了此函数在梯度方向及与牛顿方向连线上的单调性.在此基础上本文提出了一个求解新锥模型信赖域子问题折线法,并证明了这一子算法保证解无约束优化问题信赖域法全局收敛性要满足的下降条件.本文获得的数值实验表明该算法是有效的.  相似文献   

3.
Scaled Optimal Path Trust-Region Algorithm   总被引:3,自引:0,他引:3  
Trust-region algorithms solve a trust-region subproblem at each iteration. Among the methods solving the subproblem, the optimal path algorithm obtains the solution to the subproblem in full-dimensional space by using the eigenvalues and eigenvectors of the system. Although the idea is attractive, the existing optimal path method seems impractical because, in addition to factorization, it requires either the calculation of the full eigensystem of a matrix or repeated factorizations of matrices at each iteration. In this paper, we propose a scaled optimal path trust-region algorithm. The algorithm finds a solution of the subproblem in full-dimensional space by just one Bunch–Parlett factorization for symmetric matrices at each iteration and by using the resulting unit lower triangular factor to scale the variables in the problem. A scaled optimal path can then be formed easily. The algorithm has good convergence properties under commonly used conditions. Computational results for small-scale and large-scale optimization problems are presented which show that the algorithm is robust and effective.  相似文献   

4.
We propose a trust-region type method for a class of nonsmooth nonconvex optimization problems where the objective function is a summation of a (probably nonconvex) smooth function and a (probably nonsmooth) convex function. The model function of our trust-region subproblem is always quadratic and the linear term of the model is generated using abstract descent directions. Therefore, the trust-region subproblems can be easily constructed as well as efficiently solved by cheap and standard methods. When the accuracy of the model function at the solution of the subproblem is not sufficient, we add a safeguard on the stepsizes for improving the accuracy. For a class of functions that can be "truncated'', an additional truncation step is defined and a stepsize modification strategy is designed. The overall scheme converges globally and we establish fast local convergence under suitable assumptions. In particular, using a connection with a smooth Riemannian trust-region method, we prove local quadratic convergence for partly smooth functions under a strict complementary condition. Preliminary numerical results on a family of $\ell_1$-optimization problems are reported and demonstrate the efficiency of our approach.  相似文献   

5.
信赖域算法是求解无约束优化问题的一种有效的算法.对于该算法的子问题,本文将原来目标函数的二次模型扩展成四次张量模型,提出了一个带信赖域约束的四次张量模型优化问题的求解算法.该方法的最大特点是:不仅在张量模型的非稳定点可以得到下降方向及相应的迭代步长,而且在非局部极小值点的稳定点也可以得到下降方向及相应的迭代步长,从而在算法产生的迭代点列中存在一个子列收敛到信赖域子问题的局部极小值点.  相似文献   

6.
We consider an efficient trust-region framework which employs a new nonmonotone line search technique for unconstrained optimization problems. Unlike the traditional nonmonotone trust-region method, our proposed algorithm avoids resolving the subproblem whenever a trial step is rejected. Instead, it performs a nonmonotone Armijo-type line search in direction of the rejected trial step to construct a new point. Theoretical analysis indicates that the new approach preserves the global convergence to the first-order critical points under classical assumptions. Moreover, superlinear and quadratic convergence are established under suitable conditions. Numerical experiments show the efficiency and effectiveness of the proposed approach for solving unconstrained optimization problems.  相似文献   

7.
In this paper, we propose a new affine scaling trust-region algorithm in association with nonmonotonic interior backtracking line search technique for solving nonlinear equality systems subject to bounds on variables. The trust-region subproblem is defined by minimizing a squared Euclidean norm of linear model adding the augmented quadratic affine scaling term subject only to an ellipsoidal constraint. By using both trust-region strategy and interior backtracking line search technique, each iterate switches to backtracking step generated by the general trust-region subproblem and satisfies strict interior point feasibility by line search backtracking technique. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.  相似文献   

8.
We study piecewise decomposition methods for mathematical programs with equilibrium constraints (MPECs) for which all constraint functions are linear. At each iteration of a decomposition method, one step of a nonlinear programming scheme is applied to one piece of the MPEC to obtain the next iterate. Our goal is to understand global convergence to B-stationary points of these methods when the embedded nonlinear programming solver is a trust-region scheme, and the selection of pieces is determined using multipliers generated by solving the trust-region subproblem. To this end we study global convergence of a linear trust-region scheme for linearly-constrained NLPs that we call a trust-search method. The trust-search has two features that are critical to global convergence of decomposition methods for MPECs: a robustness property with respect to switching pieces, and a multiplier convergence result that appears to be quite new for trust-region methods. These combine to clarify and strengthen global convergence of decomposition methods without resorting either to additional conditions such as eventual inactivity of the trust-region constraint, or more complex methods that require a separate subproblem for multiplier estimation.   相似文献   

9.
A new trust region algorithm for bound constrained minimization   总被引:7,自引:0,他引:7  
We introduce a new algorithm of trust-region type for minimizing a differentiable function of many variables with box constraints. At each step of the algorithm we use an approximation to the minimizer of a quadratic in a box. We introduce a new method for solving this subproblem, that has finite termination without dual nondegeneracy assumptions. We prove the global convergence of the main algorithm and a result concerning the identification of the active constraints in finite time. We describe an implementation of the method and we present numerical experiments showing the effect of solving the subproblem with different degrees of accuracy.This work was supported by FAPESP (Grants 90-3724-6 and 91-2441-3), CNPq, FINEP, and FAEP-UNICAMP.  相似文献   

10.
In this paper, we propose a new trust-region-projected Hessian algorithm with nonmonotonic backtracking interior point technique for linear constrained optimization. By performing the QR decomposition of an affine scaling equality constraint matrix, the conducted subproblem in the algorithm is changed into the general trust-region subproblem defined by minimizing a quadratic function subject only to an ellipsoidal constraint. By using both the trust-region strategy and the line-search technique, each iteration switches to a backtracking interior point step generated by the trustregion subproblem. The global convergence and fast local convergence rates for the proposed algorithm are established under some reasonable assumptions. A nonmonotonic criterion is used to speed up the convergence in some ill-conditioned cases. Selected from Journal of Shanghai Normal University (Natural Science), 2003, 32(4): 7–13  相似文献   

11.
In this paper, a class of finely discretized Semi-Infinite Programming (SIP) problems is discussed. Combining the idea of the norm-relaxed Method of Feasible Directions (MFD) and the technique of updating discretization index set, we present a new algorithm for solving the Discretized Semi-Infinite (DSI) problems from SIP. At each iteration, the iteration point is feasible for the discretized problem and an improved search direction is computed by solving only one direction finding subproblem, i.e., a quadratic program, and some appropriate constraints are chosen to reduce the computational cost. A high-order correction direction can be obtained by solving another quadratic programming subproblem with only equality constraints. Under weak conditions such as Mangasarian–Fromovitz Constraint Qualification (MFCQ), the proposed algorithm possesses weak global convergence. Moreover, the superlinear convergence is obtained under Linearly Independent Constraint Qualification (LICQ) and other assumptions. In the end, some elementary numerical experiments are reported.  相似文献   

12.
Limited-memory quasi-Newton methods and trust-region methods represent two efficient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited-memory methods are usually combined with a line search. We show how to efficiently combine limited-memory and trust-region techniques. One of our approaches is based on the eigenvalue decomposition of the limited-memory quasi-Newton approximation of the Hessian matrix. The decomposition allows for finding a nearly-exact solution to the trust-region subproblem defined by the Euclidean norm with an insignificant computational overhead as compared with the cost of computing the quasi-Newton direction in line-search limited-memory methods. The other approach is based on two new eigenvalue-based norms. The advantage of the new norms is that the trust-region subproblem is separable and each of the smaller subproblems is easy to solve. We show that our eigenvalue-based limited-memory trust-region methods are globally convergent. Moreover, we propose improved versions of the existing limited-memory trust-region algorithms. The presented results of numerical experiments demonstrate the efficiency of our approach which is competitive with line-search versions of the L-BFGS method.  相似文献   

13.
提出非线性等式和有界约束优化问题的结合非单调技术的仿射信赖域方法. 结合信赖域方法和内点回代线搜索技术, 每一步迭代转到由一般信赖域子问题产生的回代步中且满足严格内点可行条件. 在合理的假设条件下, 证明了算法的整体收敛性和局部超线性收敛速率. 最后, 数值结果表明了所提供的算法具有有效性.  相似文献   

14.
In this article, an affine scaling interior trust-region algorithm which employs backtracking line search with filter technique is presented for solving nonlinear equality constrained programming with nonnegative constraints on variables. At current iteration, the general full affine scaling trust-region subproblem is decomposed into a pair of trust-region subproblems in vertical and horizontal subspaces, respectively. The trial step is given by the solutions of the pair of trust-region subproblems. Then, the step size is decided by backtracking line search together with filter technique. This is different from traditional trust-region methods and has the advantage of decreasing the number of times that a trust-region subproblem must be resolved in order to determine a new iteration point. Meanwhile, using filter technique instead of merit function to determine a new iteration point can avoid the difficult decisions regarding the choice of penalty parameters. Under some reasonable assumptions, the new method possesses the property of global convergence to the first-order critical point. Preliminary numerical results show the effectiveness of the proposed algorithm.  相似文献   

15.
By means of a conjugate gradient strategy, we propose a trust region method for unconstrained optimization problems. The search direction is an adequate combination of the conjugate gradient direction and the trust-region direction. The global convergence and the quadratic convergence of this method are established under suitable conditions. Numerical results show that the presented method is competitive to the trust region method and the conjugate gradient method.  相似文献   

16.
赵奇  张燕 《运筹学学报》2012,16(2):91-104
提出一种改进的求解极小极大问题的信赖域滤子方法,利用SQP子问题来求一个试探步,尾服用滤子来衡量是否接受试探步,避免了罚函数的使用;并且借用已有文献的思想, 使用了Lagrange函数作为效益函数和非单调技术,在适当的条件下,分析了算法的全局和局部收敛性,并进行了数值实验.  相似文献   

17.
In Ref. 1, Nocedal and Overton proposed a two-sided projected Hessian updating technique for equality constrained optimization problems. Although local two-step Q-superlinear rate was proved, its global convergence is not assured. In this paper, we suggest a trust-region-type, two-sided, projected quasi-Newton method, which preserves the local two-step superlinear convergence of the original algorithm and also ensures global convergence. The subproblem that we propose is as simple as the one often used when solving unconstrained optimization problems by trust-region strategies and therefore is easy to implement.This research was supported in part by the National Natural Science Foundation of China.  相似文献   

18.
In this paper, we propose a BFGS (Broyden–Fletcher–Goldfarb–Shanno)-SQP (sequential quadratic programming) method for nonlinear inequality constrained optimization. At each step, the method generates a direction by solving a quadratic programming subproblem. A good feature of this subproblem is that it is always consistent. Moreover, we propose a practical update formula for the quasi-Newton matrix. Under mild conditions, we prove the global and superlinear convergence of the method. We also present some numerical results.  相似文献   

19.
We introduce an inexact Gauss–Newton trust-region method for solving bound-constrained nonlinear least-squares problems where, at each iteration, a trust-region subproblem is approximately solved by the Conjugate Gradient method. Provided a suitable control on the accuracy to which we attempt to solve the subproblems, we prove that the method has global and asymptotic fast convergence properties. Some numerical illustration is also presented.  相似文献   

20.
In this paper, we present a nonmonotone trust-region method of conic model for unconstrained optimization. The new method combines a new trust-region subproblem of conic model proposed in [Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via active-set strategy, Appl. Math. Comput. 183 (2006) 217–231] with a nonmonotone technique for solving unconstrained optimization. The local and global convergence properties are proved under reasonable assumptions. Numerical experiments are conducted to compare this method with the method of [Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via active-set strategy, Appl. Math. Comput. 183 (2006) 217–231].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号