首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
偏微分方程的区间小波自适应精细积分法   总被引:9,自引:0,他引:9  
利用插值小波理论构造了拟Shannon区间小波,并结合外推法给出了一种求解非线性常微分方程组的时间步长自适应精细积分法,在此基础上构造了求解非线性偏微分方程的区间小波自适应精细积分法(AIWPIM)· 数值结果表明,该方法在计算精度上优于将小波和四阶Runge_Kutta法组合得到的偏微分方程的数值求解方法,而计算量则相差不大· 该文方法通过Burgers方程给出,但适用于一般情形·  相似文献   

2.
基于拟Shannon小波浅水长波近似方程组的数值解   总被引:1,自引:0,他引:1  
夏莉 《数学杂志》2007,27(3):255-260
本文研究了浅水长波近似方程组初边值问题的数值解.利用小波多尺度分析和区间拟Shannon小波,对浅水长波近似方程组空间导数实施空间离散,用时间步长自适应精细积分法对其变换所的非线性常微分方程组进行求解,得到了浅水长波近似方程组的数值解,并将此方法计算的结果与其解析解进行比较和验证.  相似文献   

3.
提出一种新的求解Poisson方程的小波有限元方法,采用区间三次Hermite样条小波基作为多尺度有限元插值基函数,并详细讨论了小波有限元提升框架.由于小波基按照给定的内积正交,可实现相应的多尺度嵌套逼近小波有限元求解方程,在不同尺度上的插值基之间完全解耦和部分解耦.数值算例表明在求解Poisson方程时,该方法具有高的效率和精度.  相似文献   

4.
研究Black-Scholes期权定价方程的自适应算法,对Black-Scholes方程设计插值小波配点离散格式,然后设计自适应算法,该算法能够自动在一个接近最优的网格上找到B-S模型的解,数值试验表明其高效性.  相似文献   

5.
小波的紧支性,正交性和二阶以上的Daubechies尺度函数及小波函数的可微性,很适合作为Galerkin方法的基函数。加上快速小波变换,这已成为数值求解偏微分方程的有力工具,本文利用微分算子的小波表示。对一维线性波动方程的小波数值解法进行了讨论。最后用实例说明了波波方法的有效性和快速性。  相似文献   

6.
非线性Black-Scholes模型下阶梯期权定价   总被引:1,自引:0,他引:1  
在非线性Black-Scholes模型下,研究了阶梯期权定价问题.首先利用多尺度方法,将阶梯期权适合的偏微分方程分解成一系列常系数抛物方程;其次通过计算这些常系数抛物型方程的解,给出了修正障碍期权的近似定价公式;最后利用Feymann-Kac公式分析了近似结论的误差估计.  相似文献   

7.
基于Richardson外推法提出了数值求解三维泊松方程的高阶紧致差分方法.方法通过利用四阶和六阶紧致差分格式,分别在细网格和粗网格上求解,然后利用Richardson外推技术和算子插值方法,得到三维泊松方程在细网格上的六阶和八阶精度的数值解.数值实验结果验证了该方法的精确性和有效性.  相似文献   

8.
以浅水长波近似方程组为例,提出了拟小波方法求解(1 1)维非线性偏微分方程组数值解,该方程用拟小波离散格式离散空间导数,得到关于时间的常微分方程组,用四阶Runge-K utta方法离散时间导数,并将其拟小波解与解析解进行比较和验证.  相似文献   

9.
基于Daubechies正交小波,对微分算子进行小波近似,从而求解Black-Scholes方程,为期权定价提出了一种新的尝试.通过偏微分算子和小波系数的稀疏化,相对二叉树法,大大减少了计算量,提高了运算速度.  相似文献   

10.
带小波函数的Cauchy主值积分的数值计算   总被引:4,自引:1,他引:3  
1 引言 众所周知,小波方法在信号处理和图像处理方面发挥了举世瞩目的成就。近年来人们研究小波方法在数值分析方面的应用。期望在数值求解微分方程和积分方程方面发挥良好的作用。本文研究带有小波函数的Cauchy主值积分 的数值计算方法,其中Φ(x)是紧支撑的尺度函数。这是数值求解积分方程的核心问题之一。 1.l 多分辩分析 空间L~2(R)中的一个多分辩分析是这样的闭子空间列{V_j},它满足下列条件 1) 2) 3) 4)存在尺度函数,使构成V_o的Riesz基,从而也存在序列使满足双尺度方程  相似文献   

11.
In this paper, we present a new numerical scheme, based on the finite difference method, to solve American put option pricing problems. Upon applying a Landau transform or the so-called front-fixing technique [19] to the Black-Scholes partial differential equation, a predictor-corrector finite difference scheme is proposed to numerically solve the nonlinear differential system. Through the comparison with Zhu’s analytical solution [35], we shall demonstrate that the numerical results obtained from the new scheme converge well to the exact optimal exercise boundary and option values. The results of our numerical examples suggest that this approach can be used as an accurate and efficient method even for pricing other types of financial derivative with American-style exercise.  相似文献   

12.
Fractional calculus is an extension of derivatives and integrals to non-integer orders, and a partial differential equation involving the fractional calculus operators is called the fractional PDE. They have many applications in science and engineering. However not only the analytical solution existed for a limited number of cases, but also the numerical methods are very complicated and difficult. In this paper, we newly establish the simulation method based on the operational matrices of the orthogonal functions. We formulate the operational matrix of integration in a unified framework. By using the operational matrix of integration, we propose a new numerical method for linear fractional partial differential equation solving. In the method, we (1) use the Haar wavelet; (2) establish a Lyapunov-type matrix equation; and (3) obtain the algebraic equations suitable for computer programming. Two examples are given to demonstrate the simplicity, clarity and powerfulness of the new method.  相似文献   

13.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

14.
The wavelet methods have been extensively adopted and integrated in various numerical methods to solve partial differential equations. The wavelet functions, however, do not satisfy the Kronecker delta function properties, special treatment methods for imposing the Dirichlet-type boundary conditions are thus required. It motivates us to present in this paper a novel treatment technique for the essential boundary conditions (BCs) in the spline-based wavelet Galerkin method (WGM), taking the advantages of the multiple point constraints (MPCs) and adaptivity. The linear B-spline scaling function and multilevel wavelet functions are employed as basis functions. The effectiveness of the present method is addressed, and in particular the applicability of the MPCs is also investigated. In the proposed technique, MPC equations based on the tying relations of the wavelet basis functions along the essential BCs are developed. The stiffness matrix is degenerated based on the MPC equations to impose the BCs. The numerical implementation is simple, and no additional degrees of freedom are needed in the system of linear equations. The accuracy of the present formulation in treating the BCs in the WGM is high, which is illustrated through a number of representative numerical examples including an adaptive analysis.  相似文献   

15.
Chebyshev wavelet operational matrix of the fractional integration is derived and used to solve a nonlinear fractional differential equations. Some examples are included to demonstrate the validity and applicability of the technique.  相似文献   

16.
In this paper, we apply the new homotopy perturbation method to solve the Volterra's model for population growth of a species in a closed system. This technique is extended to give solution for nonlinear integro‐differential equation in which the integral term represents the total metabolism accumulated fromtime zero. The approximate analytical procedure only depends on two components. The newhomotopy perturbationmethodwas applied to nonlinear integro‐differential equations directly and by converting the problem into nonlinear ordinary differential equation. We also compare this method with some other numerical results and show that the present approach is less computational and is applicable for solving nonlinear integro‐differential equations and ordinary differential equations as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we are concerned with the time integration of differential equations modeling option pricing. In particular, we consider the Black-Scholes equation for American options. As an alternative to existing methods, we present exponential Rosenbrock integrators. These integrators require the evaluation of the exponential and related functions of the Jacobian matrix. The resulting methods have good stability properties. They are fully explicit and do not require the numerical solution of linear systems, in contrast to standard integrators. We have implemented some numerical experiments in Matlab showing the reliability of the new method.  相似文献   

18.
In this paper, a new numerical method for solving fractional differential equations is presented. The fractional derivative is described in the Caputo sense. The method is based upon Bernoulli wavelet approximations. The Bernoulli wavelet is first presented. An operational matrix of fractional order integration is derived and is utilized to reduce the initial and boundary value problems to system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号