首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The flow of a viscous fluid over a thin, deformable porous layer fixed to the solid wall of a channel is considered. The coupled equations for the fluid velocity and the infinitesimal deformation of the solid matrix within the porous layer are developed using binary mixture theory, Darcy's law and the assumption of linear elasticity. The case of pure shear is solved analytically for the displacement of the solid matrix, the fluid velocity both in the porous medium and the fluid above it. For a thin porous layer the boundary condition for the fluid velocity at the fluid-matrix interface is derived. This condition replaces the usual no slip condition and can be applied without solving for the flow in the porous layer.  相似文献   

2.
This work presents a boundary layer analysis about variable viscosity effects on the double-diffusive convection near a vertical truncated cone in a fluid-saturated porous medium with constant wall temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of the temperature. A boundary layer analysis is employed to derive the nondimensional nonsimilar governing equations, and the transformed boundary layer governing equations are solved by the cubic spline collocation method to yield computationally efficient numerical solutions. The obtained results are found to be in good agreement with previous papers on special cases of the problem. Results for local Nusselt and Sherwood numbers are presented as functions of viscosity-variation parameter, buoyancy ratio, and Lewis number. For a porous medium saturated with a Newtonian fluid with viscosity proportional to an inverse linear function of temperature, higher value of viscosity-variation parameter leads to the decrease of the viscosity in fluid flow, thus increasing the fluid velocity as well as the local Nusselt number and the local Sherwood number.  相似文献   

3.
A linear problem of parametric oscillations of a low-viscous two-layer fluid in a closed vessel partially filled with a porous medium is studied. An asymptotic solution is constructed on the basis of combined application of boundary functions and averaging methods. Approximate formulas for boundaries of instability domains in the case of subharmonic and harmonic resonances are derived.  相似文献   

4.
This paper deals with the study of the MHD flow of non-Newtonian fluid on a porous plate. Two exact solutions for non-torsionally generated unsteady hydromagnetic flow of an electrically conducting second order incompressible fluid bounded by an infinite non-conducting porous plate subjected to a uniform suction or blowing have been analyzed. The governing partial differential equation for the flow has been established. The mathematical analysis is presented for the hydromagnetic boundary layer flow neglecting the induced magnetic field. The effect of presence of the material constants of the second order fluid on the velocity field is discussed.  相似文献   

5.
The equations of Bleustein and Green [2] are formulated in a way suitable to describe the convective instability which occurs when a layer of dipolar fluid is heated from below. The linear instability boundary is shown to coincide with the nonlinear stability curve and the critical Rayleigh numbers describing this boundary are found; in particular, the non-dimensional micro-length is found to always stabilize.  相似文献   

6.
A nonlinear generalized multiple moving boundary model of one-dimensional non-Darcy flow in heterogeneous multilayered low-permeability porous media with a threshold pressure gradient is constructed, in which the total rate of fluid injection into the porous media remains constant. The number of layers in the model can be arbitrary, and thus the generalized model will be very suitable for describing the one-dimensional non-Darcy flow characteristics in low-permeability reservoirs with strong heterogeneity. Through the similarity transformation method, the exact analytical solution of the multiple moving boundary model is obtained, and the formula for the subrate of fluid injection into every layer is provided. Moreover, it is strictly proved that the exact analytical solution can reduce to the solution of Darcy flow as the threshold pressure gradient in different layers simultaneously tends to zero. Through the exact analytical solution, the effects of the layer threshold pressure gradient, the layer permeability ratio, and the layer elastic storage ratio on the moving boundaries, the spatial pressure distributions, the transient pressure, and the layer subrate in low-permeability porous media are discussed. Through comparison of the exact analytical solutions, it is also demonstrated that incorporation of the multiple moving boundary conditions is very necessary in the modeling of non-Darcy flow in heterogeneous multilayered porous media with a threshold pressure gradient, especially when the threshold pressure gradient is large. In particular, an explicit formula is presented for estimating the relative error of the transient pressure introduced by ignoring the moving boundaries in the modeling. All in all, solid theoretical foundations are provided for non-Darcy flow problems in stratified reservoirs with a threshold pressure gradient. They can be very useful for strictly verifying numerical simulation results, and for giving some guidance for project design and optimization of layer production or injection during the development of heterogeneous low-permeability reservoirs and heavy oil reservoirs so as to enhance oil recovery.  相似文献   

7.
Thermal instability of a micropolar fluid layer heated from below in the presence of hall currents is investigated. Using the appropriate boundary conditions on the boundary surfaces of the fluid layer, the frequency equation is derived and then critical Rayleigh number is determined. It is found that hall current parameter has destabilizing effect on the system. For specific values of parameters, oscillatory convection in observed in the system. The behavior of Rayleigh number with wavenumber is also computed for different values of various parameters. The results of some earlier workers have been reduced as a special case from the present problem.  相似文献   

8.
When a body of fluid bounded by a porous disk of finite thickness is disturbed from a state of rigid rotation by an enhanced (or reduced) angular velocity of the disk, a few authors followed Darcys model and observed that the centrifugal pumping occurs through the entire porous layer regarded as a convection zone. The shear stress can develop only at the edge of the porous layer. We use a porous disk of high permeability that allows the fluid in the porous disk to deform in response to the changing angular velocity. Based on the Birkmans model, we solve for the steady non-linear flow and observe that there arises (i) a convection zone of nearly uniform angular velocity at the boundary (within the porous layer) and (ii) a transition zone adjacent to the convection zone which provides a smooth transition to the interior. This makes the model relevant to some astrophysical situations as described by some authors [1, 3]. The two point boundary value problem is solved subject to the boundary conditions, the far field conditions, and the matching conditions at the fluid-porous medium interface. The solution is obtained using a numerical procedure known as the method of Adjoints.Received: June 13, 2002; revised: July 7, 2003  相似文献   

9.
When a body of fluid bounded by a porous disk of finite thickness is disturbed from a state of rigid rotation by an enhanced (or reduced) angular velocity of the disk, a few authors followed Darcys model and observed that the centrifugal pumping occurs through the entire porous layer regarded as a convection zone. The shear stress can develop only at the edge of the porous layer. We use a porous disk of high permeability that allows the fluid in the porous disk to deform in response to the changing angular velocity. Based on the Birkmans model, we solve for the steady non-linear flow and observe that there arises (i) a convection zone of nearly uniform angular velocity at the boundary (within the porous layer) and (ii) a transition zone adjacent to the convection zone which provides a smooth transition to the interior. This makes the model relevant to some astrophysical situations as described by some authors [1, 3]. The two point boundary value problem is solved subject to the boundary conditions, the far field conditions, and the matching conditions at the fluid-porous medium interface. The solution is obtained using a numerical procedure known as the method of Adjoints.  相似文献   

10.
V. G. Tsybulin  A. D. Nemtsev  B. Karasözen 《PAMM》2007,7(1):1030407-1030408
We consider three-dimensional convection of an incompressible fluid saturated in a parallelepiped with a porous medium. A mimetic finite-difference scheme for the Darcy convection problem in the primitive variables is developed. Two problems with different boundary conditions are considered to study scenarios of instability of the state of rest. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The onset of Marangoni convection in a non-reactive binary fluid layer in the presence of throughflow and Soret effect is determined. The bottom boundary of the fluid layer is assumed to be either conducting or insulating to temperature and solute concentration perturbations while the top boundary is free and insulating. The linear stability analysis is followed and an exact solution is obtained for the corresponding eigenvalue problem by assuming that stationary convection is exhibited at the neutral state. The contribution from the Soret effect is seen only when the throughflow is weak, but however for a wider range of upward throughflow when the bottom boundary is conducting. The instability gets advanced/delayed when the Soret parameter assumes negative/positive values. The results agree well with the existing results in the literature for some particular cases.  相似文献   

12.
Analytic solution for the time-dependent boundary layer flow over a moving porous surface is derived by using homotopy analysis method (HAM). A special third grade fluid model has been used in the problem formulation. The obtained HAM solution is also compared with the numerical solution and a reasonable agreement is noted.  相似文献   

13.
In this paper we study the behavior of the stationary magnetic hydrodynamical boundary layer of a dilatant fluid flowing through a porous obstacle. We consider a family of boundary value problems with a small parameter where micro-inhomogeneities are concentrated on the boundary of the domain (the original velocity profile depends on a small parameter). We construct an averaged problem and prove convergence of the solution of the original problem to that of the averaged one. Thus we describe the effective behavior of the micro-inhomogeneous fluid.  相似文献   

14.
A modified second grade non-Newtonian fluid model is considered. The model is a combination of power-law and second grade fluids in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The flow of this fluid is considered over a porous plate. Equations of motion in dimensionless form are derived. When the power-law effects are small compared to second grade effects, a regular perturbation problem arises which is solved. The validity criterion for the solution is derived. When second grade effects are small compared to power-law effects, or when both effects are small, the problem becomes a boundary layer problem for which the solutions are also obtained. Perturbation solutions are contrasted with the numerical solutions. For the regular perturbation problem of small power-law effects, an excellent match is observed between the solutions if the validity criterion is met. For the boundary layer solution of vanishing second grade effects however, the agreement with the numerical data is not good. When both effects are considered small, the boundary layer solution leads to the same solution given in the case of a regular perturbation problem.  相似文献   

15.
The influences of Hall current and slip condition on the MHD flow induced by sinusoidal peristaltic wavy wall in two dimensional viscous fluid through a porous medium for moderately large Reynolds number is considered on the basis of boundary layer theory in the case where the thickness of the boundary layer is larger than the amplitude of the wavy wall. Solutions are obtained in terms of a series expansion with respect to small amplitude by a regular perturbation method. Graphs of velocity components, both for the outer and inner flows for various values of the Reynolds number, slip parameter, Hall and magnetic parameters are drawn. The inner and outer solutions are matched by the matching process. An interesting application of the present results to mechanical engineering may be the possibility of the fluid transportation without an external pressure.  相似文献   

16.
We describe the asymptotic behaviour of an incompressible viscous free fluid in contact with a porous layer flow through the porous layer surface. This porous layer has a small thickness and consists of thin channels periodically distributed. Two scales are present in this porous medium, one associated to the periodicity of the distribution of the channels and the other to the size of these channels. Proving estimates on the solution of this Stokes problem, we establish a critical link between these two scales. We prove that the limit problem is a Stokes flow in the free domain with further boundary conditions on the basis of the domain which involve an extra velocity, an extra pressure and two second-order tensors. This limit problem is obtained using Γ-convergence methods. We finally consider the case of a Navier–Stokes flow within this context.  相似文献   

17.
The rotating flow in the presence of a magnetic field is a problem belonging to hydromagnetics and deserves to be more widely studied than it has been to date. In the non‐linear regime the literature is scarce. We develop the governing equations for the unsteady hydromagnetic rotating flow of a fourth‐order fluid past a porous plate. The steady flow is governed by a boundary value problem in which the order of differential equations is more than the number of available boundary conditions. It is shown that by augmenting the boundary conditions based on asymptotic structures at infinity it is possible to obtain numerical solutions of the nonlinear hydromagnetic equations. Effects of uniform suction or blowing past the porous plate, exerted magnetic field and rotation on the flow phenomena, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviours of the Newtonian fluid and second‐, third‐ and fourth‐order non‐Newtonian fluids are compared for the special flow problem, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
For a degenerate system of equations such as the equations of motion of immiscible fluids in porous media, we study the solvability of an initial–boundary value problem. Using the process of capillary imbibition of a wetting fluid as an example, we study a class of self-similar solutions with degeneration on the movable boundary and on the entry into the porous layer. The considered problem can be reduced to the analysis of properties of a nonlinear operator equation. For the classical solution of the original problem, we prove existence and uniqueness theorems.  相似文献   

19.
A nonlinear stability analysis is performed to study the onset of convection in a fluid saturated porous layer subject to alternating direction of the centrifugal body force. By introducing a suitable energy functional, the analysis is carried out for the Darcy and the Brinkman models of flow through porous media. The nonlinear result is unconditional and its sharpest limit is determined and is compared with the corresponding linear limit. The failure of linear theory in describing the instability is established in a certain region of the parameter space where possible subcritical instabilities may arise. The stability boundaries are discussed graphically for various values of the Darcy number and comparison is made with the available known results.  相似文献   

20.
This paper addresses the problem of the onset of Rayleigh-Bénard convection in a porous layer using Brinkman's equation and anisotropic permeability. The critical Rayleigh number and wave number at marginal stabilities are calculated for both free and rigid boundaries. In both cases, it is noted that there exist ranges for which the stability criteria is intermediate to the low porosity Darcy approximation and to high porosity single viscous fluid. The permeability anisotropy is found to select the mode of instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号