首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A vibratory system having symmetrically placed rigid stops and subjected to periodic excitation is considered. Local codimension two bifurcations of the vibratory system with symmetrical rigid stops, associated with double Hopf bifurcation and interaction of Hopf and pitchfork bifurcation, are analyzed by using the center manifold theorem technique and normal form method of maps. Dynamic behavior of the system, near the points of codimension two bifurcations, is investigated by using qualitative analysis and numerical simulation. Hopf-flip bifurcation of fixed points in the vibratory system with a single stop are briefly analyzed by comparison with unfoldings analyses of Hopf-pitchfork bifurcation of the vibratory system with symmetrical rigid stops. Near the value of double Hopf bifurcation there exist period-one double-impact symmetrical motion and quasi-periodic impact motions. The quasi-periodic impact motions are represented by the closed circle and “tire-like” attractor in projected Poincaré sections. With change of system parameters, the quasi-periodic impact motions usually lead to chaos via “tire-like” torus doubling.  相似文献   

2.
A mathematical model is developed to study periodic-impact motions and bifurcations in dynamics of a small vibro-impact pile driver. Dynamics of the small vibro-impact pile driver can be analyzed by means of a three-dimensional map, which describes free flight and sticking solutions of the vibro-impact system, between impacts, supplemented by transition conditions at the instants of impacts. Piecewise property and singularity are found to exist in the Poincaré map. The piecewise property is caused by the transitions of free flight and sticking motions of the driver and the pile immediately after the impact, and the singularity of map is generated via the grazing contact of the driver and the pile immediately before the impact. These properties of the map have been shown to exhibit particular types of sliding and grazing bifurcations of periodic-impact motions under parameter variation. The influence of piecewise property, grazing singularities and parameter variation on the performance of the vibro-impact pile driver is analyzed. The global bifurcation diagrams for the impact velocity of the driver versus the forcing frequency are plotted to predict much of the qualitative behavior of the actual physical system, which enable the practicing engineer to select excitation frequency ranges in which stable period one single-impact response can be expected to occur, and to predict the larger impact velocity and shorter impact period of such response.  相似文献   

3.
Two vibroimpact systems are considered, which can exhibit symmetrical double-impact periodic motions under suitable system parameter conditions. Dynamics of such systems are studied by use of maps derived from the equations of motion, between impacts, supplemented by transition conditions at the instants of impacts. Two-parameter bifurcations of fixed points in the vibroimpact systems, associated with 1:2 strong resonance, are analyzed. Interesting features like Neimark–Sacker bifurcation of period-1 double-impact symmetrical motion, tangent bifurcation of period-2 four-impact motion, period-doubling bifurcation of period-2 four-impact motion and Neimark–Sacker bifurcation of period-4 eight-impact motion, etc., are found to occur near 1:2 resonance point of a vibroimpact system. The quasi-periodic attractor, associated with the fixed point of period-1 double-impact symmetrical motion, is destroyed as a tangent bifurcation of fixed points of period-2 four-impact motion occurs. However, for the other vibroimpact system the quasi-periodic attractor is restored via the collision of stable and unstable fixed points of period-2 four-impact motion. The results mean that there exist possibly more complicated bifurcation sequences of period-two cycle near 1:2 resonance points of non-linear dynamical systems.  相似文献   

4.
In this paper, complex dynamical behavior of a class of centrifugal flywheel governor system is studied. These systems have a rich variety of nonlinear behavior, which are investigated here by numerically integrating the Lagrangian equations of motion. A tiny change in parameters can lead to an enormous difference in the long-term behavior of the system. Bubbles of periodic orbits may also occur within the bifurcation sequence. Hyperchaotic behavior is also observed in cases where two of the Lyapunov exponents are positive, one is zero, and one is negative. The routes to chaos are analyzed using Poincaré maps, which are found to be more complicated than those of nonlinear rotational machines. Periodic and chaotic motions can be clearly distinguished by all of the analytical tools applied here, namely Poincaré sections, bifurcation diagrams, Lyapunov exponents, and Lyapunov dimensions. This paper proposes a parametric open-plus-closed-loop approach to controlling chaos, which is capable of switching from chaotic motion to any desired periodic orbit. The theoretical work and numerical simulations of this paper can be extended to other systems. Finally, the results of this paper are of practical utility to designers of rotational machines.  相似文献   

5.
This paper presents a 4D new hyperchaotic system which is constructed by a linear controller to a 3D new chaotic system with one saddle and two stable node-foci. Some complex dynamical behaviors such as ultimate boundedness, chaos and hyperchaos of the simple 4D autonomous system are investigated and analyzed. The corresponding bounded hyperchaotic and chaotic attractor is first numerically verified through investigating phase trajectories, Lyapunove exponents, bifurcation path, analysis of power spectrum and Poincaré projections. Finally, two complete mathematical characterizations for 4D Hopf bifurcation are rigorous derived and studied.  相似文献   

6.
In the present paper, we study the Poincaré map associated to a periodic perturbation, both in space and time, of a linear Hamiltonian system. The dynamical system embodies the essential physics of stellar pulsations and provides a global and qualitative explanation of the chaotic oscillations observed in some stars. We show that this map is an area preserving one with an oscillating rotation number function. The nonmonotonic property of the rotation number function induced by the triplication of the elliptic fixed point is superposed on the nonmonotonic character due to the oscillating perturbation. This superposition leads to the co-manifestation of generic phenomena such as reconnection and meandering, with the nongeneric scenario of creation of vortices. The nonmonotonic property due to the triplication bifurcation is shown to be different from that exhibited by the cubic Hénon map, which can be considered as the prototype of area preserving maps which undergo a triplication followed by the twistless bifurcation. Our study exploits the reversibility property of the initial system, which induces the time-reversal symmetry of the Poincaré map.  相似文献   

7.
Chaos and chaos synchronization of the centrifugal flywheel governor system are studied in this paper. By mechanics analyzing, the dynamical equation of the centrifugal flywheel governor system is established. Because of the non-linear terms of the system, the system exhibits both regular and chaotic motions. The characteristic of chaotic attractors of the system is presented by the phase portraits and power spectra. The evolution from Hopf bifurcation to chaos is shown by the bifurcation diagrams and a series of Poincaré sections under different sets of system parameters, and the bifurcation diagrams are verified by the related Lyapunov exponent spectra. This letter addresses control for the chaos synchronization of feedback control laws in two coupled non-autonomous chaotic systems with three different coupling terms, which is demonstrated and verified by Lyapunov exponent spectra and phase portraits. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

8.
Duffing's equation with two external forcing terms have been discussed. The threshold values of chaotic motion under the periodic and quasi-periodic perturbations are obtained by using second-order averaging method and Melnikov's method. Numerical simulations not only show the consistence with the theoretical analysis but also exhibit the interesting bifurcation diagrams and the more new complex dynamical behaviors, including period-n (n=2,3,6,8) orbits, cascades of period-doubling and reverse period doubling bifurcations, quasi-periodic orbit, period windows, bubble from period-one to period-two, onset of chaos, hopping behavior of chaos, transient chaos, chaotic attractors and strange non-chaotic attractor, crisis which depends on the frequencies, amplitudes and damping. In particular, the second frequency plays a very important role for dynamics of the system, and the system can leave chaotic region to periodic motions by adjusting some parameter which can be considered as an control strategy of chaos. The computation of Lyapunov exponents confirm the dynamical behaviors.  相似文献   

9.
This work reports on a numerical study undertaken to investigate the response of an imbalanced rigid rotor supported by active magnetic bearings. The mathematical model of the rotor-bearing system used in this study incorporates nonlinearity arising from the electromagnetic force—coil current—air gap relationship, and the effects of geometrical cross-coupling. The response of the rotor is observed to exhibit a rich variety of dynamical behavior including synchronous, sub-synchronous, quasi-periodic and chaotic vibrations. The transition from synchronous rotor response to chaos is via the torus breakdown route. As the rotor imbalance magnitude is increased, the synchronous rotor response undergoes a secondary Hopf bifurcation resulting in quasi-periodic vibration, which is characterized by a torus attractor. With further increase in the rotor imbalance magnitude, this attractor is seen to develop wrinkles and becomes unstable resulting in a fractal torus attractor. The fractal torus is eventually destroyed as the rotor imbalance magnitude is further increased. Quasi-periodic and frequency-locked sub-synchronous vibrations are seen to appear and disappear alternately before the emergence of chaos in the response of the rotor. The magnitude of rotor imbalance where sub-synchronous, quasi-periodic and chaotic vibrations are observed in this study, albeit being higher than the specified imbalance level for rotating machinery, may possibly occur due to a gradual degradation of the rotor balance quality during operation.  相似文献   

10.
In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh–Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above.  相似文献   

11.
In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum’s cascade of periodic doublings is also observed. Secondly, we explored the Neimark–Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc.  相似文献   

12.
The stability and bifurcation of a van der Pol-Duffing oscillator with the delay feedback are investigated, in which the strength of feedback control is a nonlinear function of delay. A geometrical method in conjunction with an analytical method is developed to identify the critical values for stability switches and Hopf bifurcations. The Hopf bifurcation curves and multi-stable regions are obtained as two parameters vary. Some weak resonant and non-resonant double Hopf bifurcation phenomena are observed due to the vanishing of the real parts of two pairs of characteristic roots on the margins of the “death island” regions simultaneously. By applying the center manifold theory, the normal forms near the double Hopf bifurcation points, as well as classifications of local dynamics are analyzed. Furthermore, some quasi-periodic and chaotic motions are verified in both theoretical and numerical ways.  相似文献   

13.
Two typical vibro-impact systems are considered. The periodic-impact motions and Poincaré maps of the vibro-impact systems are derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a two-dimensional one, and the normal form map associated with 1:4 strong resonance is obtained. Two-parameter bifurcations of fixed points in the vibro-impact systems, associated with 1:4 strong resonance, are analyzed. The results from simulation illustrate some interesting features of dynamics of the vibro-impact systems. Some complicated bifurcations, e.g., tangent, fold and Neimark–Sacker bifurcations of period-4 orbits are found to exist near the 1:4 strong resonance points of the vibro-impact systems.  相似文献   

14.
This paper investigates the existence and stability of the grazing periodic trajectory in a two-degree-of-freedom vibro-impact system. The criterion for existence of grazing period-n motion is presented. A local analysis based on the discontinuity-mapping approach is employed to derive a normal form Poincaré mapping near the grazing trajectory. Based on the above approach, a condition of stability can be formulated, such that a grazing trajectory will be discontinuous if the condition is unfulfilled. The predicted grazing bifurcations are in agreement with the numerical results. In particular, comparison of the grazing bifurcation diagrams of the normal form Poincaré mapping and the simulation diagrams of the original differential equation illustrates the validity of the discontinuity-mapping approach.  相似文献   

15.
This paper studies various Hopf bifurcations in the two-dimensional plane Poiseuille problem. For several values of the wavenumber α, we obtain the branch of periodic flows which are born at the Hopf bifurcation of the laminar flow. It is known that, taking α ≈ 1, the branch of periodic solutions has several Hopf bifurcations to quasi-periodic orbits. For the first bifurcation, calculations from other authors seem to indicate that the bifurcating quasi-periodic flows are stable and subcritical with respect to the Reynolds number, Re. By improving the precision of previous works we find that the bifurcating flows are unstable and supercritical with respect to Re. We have also analysed the second Hopf bifurcation of periodic orbits for several α, to find again quasi-periodic solutions with increasing Re. In this case the bifurcated solutions are stable to superharmonic disturbances for Re up to another new Hopf bifurcation to a family of stable 3-tori. The proposed numerical scheme is based on a full numerical integration of the Navier-Stokes equations, together with a division by 3 of their total dimension, and the use of a pseudo-Newton method on suitable Poincaré sections. The most intensive part of the computations has been performed in parallel. We believe that this methodology can also be applied to similar problems.  相似文献   

16.
In this paper, a dynamical systems analysis is presented for characterizing the motion of a group of unicycles in leader–follower formation. The equilibrium formations are characterized along with their local stability analysis. It is demonstrated that with the variation in control gain, the collective dynamics might undergo Andronov–Hopf and Fold–Hopf bifurcations. The vigor of quasi-periodicity in the regime of Andronov–Hopf bifurcation and heteroclinic bursts between quasi-periodic and chaotic behavior in the regime of Fold–Hopf bifurcation increases with the number of unicycles. Numerical simulations also suggest the occurrence of global bifurcations involving the destruction of heteroclinic orbit.  相似文献   

17.
This paper deals with the near-invariant tori for Poisson systems. It is shown that the orbits with the initial points near the Diophantine torus approach some quasi-periodic orbits over an extremely long time. In particular, the results hold for the classical Hamiltonian system, and in this case the drift of the motions is smaller than one in the past works.  相似文献   

18.
We study the homotopical and homological properties of the attractors evolving from a generalized Hopf bifurcation. We consider the Lorenz equations for parameter values near the Hopf bifurcation and study a natural Morse decomposition of the global attractor, calculating the Čech homotopy type of the Lorenz attractor, the shape indexes of the Morse sets and the Morse equation of the decomposition.  相似文献   

19.
This paper deals with the near-invariant tori for Poisson systems. It is shown that the orbits with the initial points near the Diophantine torus approach some quasi-periodic orbits over an extremely long time. In particular, the results hold for the classical Hamiltonian system, and in this case the drift of the motions is smaller than the one in the past works.  相似文献   

20.
The discrete mathematical model for the respiratory process in bacterial culture obtained by Euler method is investigated. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory, condition of existence of chaos in the sense of Marotto's definition of chaos is proved. The bifurcation diagrams, Lyapunov exponents and phase portraits are given for different parameters of the model, and the fractal dimension of chaotic attractor was also calculated. The numerical simulation results confirm the theoretical analysis and also display the new and complex dynamical behaviors compared with the continuous model. In particular~ we found that the new chaotic attractor, and new types of two or four coexisting chaotic attractors, and two coexisting invariant torus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号