首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
In this article, we propose a mixed finite element method for the two‐dimensional Biot's consolidation model of poroelasticity. The new mixed formulation presented herein uses the total stress tensor and fluid flux as primary unknown variables as well as the displacement and pore pressure. This method is based on coupling two mixed finite element methods for each subproblem: the standard mixed finite element method for the flow subproblem and the Hellinger–Reissner formulation for the mechanical subproblem. Optimal a‐priori error estimates are proved for both semidiscrete and fully discrete problems when the Raviart–Thomas space for the flow problem and the Arnold–Winther space for the elasticity problem are used. In particular, optimality in the stress, displacement, and pressure has been proved in when the constrained‐specific storage coefficient is strictly positive and in the weaker norm when is nonnegative. We also present some of our numerical results.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1189–1210, 2014  相似文献   

2.
Numerical method is considered for a coupled continuum pipe‐flow/Darcy model describing flow in porous media with an embedded conduit pipe. A new nonconforming element is constructed to solve the Darcy equation on porous matrix. The existence and uniqueness of the approximation solution are deduced. Optimal error estimates are obtained in and norms. Some numerical examples show the accuracy and efficiency of the presented method. With the same number of nodal‐points and the same amount of computation, the results using the new nonconforming element are much better than those by both conforming element and Wilson nonconforming element on the same mesh. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 778–798, 2016  相似文献   

3.
In this article, we deal with a rigorous error analysis for the finite element solutions of the two‐dimensional Cahn–Hilliard equation with infinite time. The error estimates with respect to are proven for the fully discrete conforming piecewise linear element solution under Assumption (A1) on the initial value and Assumption (A2) on the discrete spectrum estimate in the finite element space. The analysis is based on sharp a‐priori estimates for the solutions, particularly reflecting their behavior as . Numerical experiments are carried out to support the theoretical analysis and demonstrate the efficiency of the fully discrete mixed finite element methods. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 742–762, 2017  相似文献   

4.
The nonlinear Forchheimer equations are used to describe the dynamics of fluid flows in porous media when Darcy's law is not applicable. In this article, we consider the generalized Forchheimer flows for slightly compressible fluids, and then study the expanded mixed finite element method applied to the initial boundary value problem for the resulting degenerate parabolic equation for pressure. The bounds for the solutions, time derivative, and gradient of solutions are established. Utilizing the monotonicity properties of Forchheimer equation and boundedness of solutions, a priori error estimates for solution are obtained in ‐norm, ‐norm as well as for its gradient in ‐norm for all . Optimal ‐error estimates are shown for solutions under some additional regularity assumptions. Numerical results using the lowest order Raviart–Thomas mixed element confirm the theoretical analysis regarding convergence rates. Published 2015. Numer Methods Partial Differential Eq 32: 60–85, 2016  相似文献   

5.
We consider a mixed finite‐volume finite‐element method applied to the Navier–Stokes system of equations describing the motion of a compressible, barotropic, viscous fluid. We show convergence as well as error estimates for the family of numerical solutions on condition that: (a) the underlying physical domain as well as the data are smooth; (b) the time step and the parameter of the spatial discretization are proportional, ; and (c) the family of numerical densities remains bounded for . No a priori smoothness is required for the limit (exact) solution. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1208–1223, 2017  相似文献   

6.
In this article, we study fast discontinuous Galerkin finite element methods to solve a space‐time fractional diffusion‐wave equation. We introduce a piecewise‐constant discontinuous finite element method for solving this problem and derive optimal error estimates. Importantly, a fast solution technique to accelerate Toeplitz matrix‐vector multiplications which arise from discontinuous Galerkin finite element discretization is developed. This fast solution technique is based on fast Fourier transform and it depends on the special structure of coefficient matrices. In each temporal step, it helps to reduce the computational work from required by the traditional methods to log , where is the size of the coefficient matrices (number of spatial grid points). Moreover, the applicability and accuracy of the method are verified by numerical experiments including both continuous and discontinuous examples to support our theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2043–2061, 2017  相似文献   

7.
To improve the convergence rate in L2 norm from suboptimal to optimal for both electrostatic potential and ionic concentrations in Poisson‐Nernst‐Planck (PNP) system, we propose the mixed finite element method in this article to discretize the electrostatic potential equation, and still use the standard finite element method to discretize the time‐dependent ionic concentrations equations. Optimal error estimates in norm for the electrostatic potential, and in and norms for the ionic concentrations are attained. As a by‐product, the electric field can also achieve a higher approximation order in contrast with the standard finite element method for PNP system. Numerical experiments are performed to validate the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1924–1948, 2017  相似文献   

8.
In this article, we study the long‐time stability and asymptotic behavior of the immersed finite element (IFE) method for the multilayer porous wall model for the drug‐eluting stents. First, with the IFE method for the spatial descretization, and the implicit Euler scheme for the temporal discretization, respectively, we deduce the global stability of fully discrete solution. Then, we investigate the asymptotic behavior of the discrete scheme which reveals that the multilayer porous wall model converges to the corresponding elliptic equation if approaches to a steady‐state in both and norms as . Finally, some numerical experiments are given to verify the theoretical predictions.  相似文献   

9.
The solutions of elliptic problems with a Dirac measure right‐hand side are not in dimension and therefore the convergence of the finite element solutions is suboptimal in the ‐norm. In this article, we address the numerical analysis of the finite element method for the Laplace equation with Dirac source term: we consider, in dimension 3, the Dirac measure along a curve and, in dimension 2, the punctual Dirac measure. The study of this problem is motivated by the use of the Dirac measure as a reduced model in physical problems, for which high accuracy of the finite element method at the singularity is not required. We show a quasioptimal convergence in the ‐norm, for on subdomains which exclude the singularity; in the particular case of Lagrange finite elements, an optimal convergence in ‐norm is shown on a family of quasiuniform meshes. Our results are obtained using local Nitsche and Schatz‐type error estimates, a weak version of Aubin‐Nitsche duality lemma and a discrete inf‐sup condition. These theoretical results are confirmed by numerical illustrations.  相似文献   

10.
In this article, a block‐centered finite difference method for fractional Cattaneo equation is introduced and analyzed. The unconditional stability and the global convergence of the scheme are proved rigorously. Some a priori estimates of discrete norm with optimal order of convergence both for pressure and velocity are established on nonuniform rectangular grids. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号