首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a financial market consisting of a risky asset and a riskless one, with a constant or random investment horizon. The interest rate from the riskless asset is constant, but the relative return rate from the risky asset is stochastic with an unknown parameter in its distribution. Following the Bayesian approach, the optimal investment and consumption problem is formulated as a Markov decision process. We incorporate the concept of risk aversion into the model and characterize the optimal strategies for both the power and logarithmic utility functions with a constant relative risk aversion (CRRA). Numerical examples are provided that support the intuition that a higher proportion of investment should be allocated to the risky asset if the mean return rate on the risky asset is higher or the risky asset return rate is less volatile. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers a robust optimal investment and reinsurance problem with multiple dependent risks for an Ambiguity-Averse Insurer (AAI), who is uncertain about the model parameters. We assume that the surplus of the insurance company can be allocated to the financial market consisting of one risk-free asset and one risky asset whose price process satisfies square root factor process. Under the objective of maximizing the expected utility of the terminal surplus, by adopting the technique of stochastic control, closed-form expressions of the robust optimal strategy and the corresponding value function are derived. The verification theorem is also provided. Finally, by presenting some numerical examples, the impact of some parameters on the optimal strategy is illustrated and some economic explanations are also given. We find that the robust optimal reinsurance strategies under the generalized mean–variance premium are very different from that under the variance premium principle. In addition, ignoring model uncertainty risk will lead to significant utility loss for the AAI.  相似文献   

3.
This paper analyzes the equilibrium strategy of a robust optimal reinsurance-investment problem under the mean–variance criterion in a model with jumps for an ambiguity-averse insurer (AAI) who worries about model uncertainty. The AAI’s surplus process is assumed to follow the classical Cramér–Lundberg model, and the AAI is allowed to purchase proportional reinsurance or acquire new business and invest in a financial market to manage her risk. The financial market consists of a risk-free asset and a risky asset whose price process is described by a jump-diffusion model. By applying stochastic control theory, we establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations. Furthermore, we derive both the robust equilibrium reinsurance-investment strategy and the corresponding equilibrium value function by solving the extended HJB system of equations. In addition, some special cases of our model are provided, which show that our model and results extend some existing ones in the literature. Finally, the economic implications of our findings are illustrated, and utility losses from ignoring model uncertainty, jump risks and prohibiting reinsurance are analyzed using numerical examples.  相似文献   

4.
This paper analyzes the asset allocation problem of an investor who can invest in equity and cash when there is time variation in expected returns on the equity. The solution methodology is multistage stochastic asset allocation problem with decision rules. The uncertainty is modeled using economic scenarios with Gaussian and stable Paretian non-Gaussian innovations. The optimal allocations under these alternative hypothesis are compared. Our computational results suggest that asset allocation may be up to 20% different depending on the utility function and the risk aversion level of the investor. Certainty equivalent return can be increased up to .13% and utility can be improved up to .72% by switching to the stable Paretian model.  相似文献   

5.
This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren’t considered in that paper. In this paper, we improve Hibiki’s model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.  相似文献   

6.
This paper considers the optimal investment, consumption and proportional reinsurance strategies for an insurer under model uncertainty. The surplus process of the insurer before investment and consumption is assumed to be a general jump–diffusion process. The financial market consists of one risk-free asset and one risky asset whose price process is also a general jump–diffusion process. We transform the problem equivalently into a two-person zero-sum forward–backward stochastic differential game driven by two-dimensional Lévy noises. The maximum principles for a general form of this game are established to solve our problem. Some special interesting cases are studied by using Malliavin calculus so as to give explicit expressions of the optimal strategies.  相似文献   

7.
This paper considers utility indifference valuation of derivatives under model uncertainty and trading constraints, where the utility is formulated as an additive stochastic differential utility of both intertemporal consumption and terminal wealth, and the uncertain prospects are ranked according to a multiple-priors model of Chen and Epstein (2002). The price is determined by two optimal stochastic control problems (mixed with optimal stopping time in the case of American option) of forward-backward stochastic differential equations. By means of backward stochastic differential equation and partial differential equation methods, we show that both bid and ask prices are closely related to the Black-Scholes risk-neutral price with modified dividend rates. The two prices will actually coincide with each other if there is no trading constraint or the model uncertainty disappears. Finally, two applications to European option and American option are discussed.  相似文献   

8.
Three approaches are commonly used for analyzing decisions under uncertainty: expected utility (EU), second-degree stochastic dominance (SSD), and mean-risk (MR) models, with the mean–standard deviation (MS) being the best-known MR model. Because MR models generally lead to different efficient sets and thus are a continuing source of controversy, the specific concern of this article is not to suggest another MR model. Instead, we show that the SSD- and MR-efficient sets are identical, as long as (a) the risk measure satisfies both positive homogeneity and consistency with respect to the Rothschild and Stiglitz (1970) definition(s) of increasing risk and (b) the choice set includes the riskless asset and satisfies a generalized location and scale property, which can be interpreted as a market model. Under these conditions, there is no controversy among MR models and they all have a decision-theoretic foundation. They also offer a convenient way to compare the estimation error related to the empirical implementation of different MR models.  相似文献   

9.
本文研究基于Heston随机波动率模型的资产负债管理问题。假设金融市场由一个无风险资产和一个风险资产构成,投资者的目标是最大化其终端财富的期望效用。应用随机控制方法,得到了该问题最优资产配置策略的解析表达式和相应值函数的解析解,通过数值算例分析了Heston模型主要参数以及债务对最优资产配置策略的影响。结果表明:配置到风险资产的比例对Heston模型中的参数非常敏感;为了对冲债务风险,负债的引入使得配置到风险资产的比例比无负债情形下的高;在风险厌恶系数变大时,无论投资者是否有负债,其投资到风险资产的比例则越来越低。  相似文献   

10.
ABSTRACT

This work considers a financial market stochastic model where the uncertainty is driven by a multidimensional Brownian motion. The market price of the risk process makes the transition between real world probability measure and risk neutral probability measure. Traditionally, the martingale representation formulas under the risk neutral probability measure require the market price of risk process to be bounded. However, in several financial models the boundedness assumption of the market price of risk fails; for example a financial market model with the market price of risk following an Ornstein–Uhlenbeck process. This work extends the Clark–Haussmann representation formula to underlying stochastic processes which fail to satisfy the standard requirements. Our methodology is classical, and it uses a sequence of mollifiers. Our result can be applied to hedging and optimal investment in financial markets with unbounded market price of risk. In particular, the mean variance optimization problem can be addressed within our framework.  相似文献   

11.
The business environment is full of uncertainty. Allocating the wealth among various asset classes may lower the risk of overall portfolio and increase the potential for more benefit over the long term. In this paper, we propose a mixed single-stage R&D projects and multi-stage securities portfolio selection model. Specifically, we present a bi-objective mixed-integer stochastic programming model. Moreover, we use semi-absolute deviation risk functions to measure the risk of mixed asset portfolio. Based on the idea of moments approximation method via linear programming, we propose a scenario generation approach for the mixed single-stage R&D projects and multi-stage securities portfolio selection problem. The bi-objective mixed-integer stochastic programming problem can be solved by transforming it into a single objective mixed-integer stochastic programming problem. A numerical example is given to illustrate the behavior of the proposed mixed single stage R&D projects and multi-stage securities portfolio selection model.  相似文献   

12.
An incomplete financial market is considered with a risky asset and a bond. The risky asset price is a pure jump process whose dynamics depends on a jump-diffusion stochastic factor describing the activity of other markets, macroeconomics factors or microstructure rules that drive the market. With a stochastic control approach, maximization of the expected utility of terminal wealth is discussed for utility functions of constant relative risk aversion type. Under suitable assumptions, closed form solutions for the value functions and for the optimal strategy are provided and verification results are discussed. Moreover, the solution to the dual problems associated with the utility maximization problems is derived.  相似文献   

13.
In this paper we examine the effect of stochastic volatility on optimal portfolio choice in both partial and general equilibrium settings. In a partial equilibrium setting we derive an analog of the classic Samuelson–Merton optimal portfolio result and define volatility‐adjusted risk aversion as the effective risk aversion of an individual investing in an asset with stochastic volatility. We extend prior research which shows that effective risk aversion is greater with stochastic volatility than without for investors without wealth effects by providing further comparative static results on changes in effective risk aversion due to changes in the distribution of volatility. We demonstrate that effective risk aversion is increasing in the constant absolute risk aversion and the variance of the volatility distribution for investors without wealth effects. We further show that for these investors a first‐order stochastic dominant shift in the volatility distribution does not necessarily increase effective risk aversion, whereas a second‐order stochastic dominant shift in the volatility does increase effective risk aversion. Finally, we examine the effect of stochastic volatility on equilibrium asset prices. We derive an explicit capital asset pricing relationship that illustrates how stochastic volatility alters equilibrium asset prices in a setting with multiple risky assets, where returns have a market factor and asset‐specific random components and multiple investor types. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
We study optimal stochastic control problems with jumps under model uncertainty. We rewrite such problems as stochastic differential games of forward–backward stochastic differential equations. We prove general stochastic maximum principles for such games, both in the zero-sum case (finding conditions for saddle points) and for the nonzero sum games (finding conditions for Nash equilibria). We then apply these results to study robust optimal portfolio-consumption problems with penalty. We establish a connection between market viability under model uncertainty and equivalent martingale measures. In the case with entropic penalty, we prove a general reduction theorem, stating that a optimal portfolio-consumption problem under model uncertainty can be reduced to a classical portfolio-consumption problem under model certainty, with a change in the utility function, and we relate this to risk sensitive control. In particular, this result shows that model uncertainty increases the Arrow–Pratt risk aversion index.  相似文献   

15.
We discuss an optimal portfolio selection problem of an insurer who faces model uncertainty in a jump-diffusion risk model using a game theoretic approach. In particular, the optimal portfolio selection problem is formulated as a two-person, zero-sum, stochastic differential game between the insurer and the market. There are two leader-follower games embedded in the game problem: (i) The insurer is the leader of the game and aims to select an optimal portfolio strategy by maximizing the expected utility of the terminal surplus in the “worst-case” scenario; (ii) The market acts as the leader of the game and aims to choose an optimal probability scenario to minimize the maximal expected utility of the terminal surplus. Using techniques of stochastic linear-quadratic control, we obtain closed-form solutions to the game problems in both the jump-diffusion risk process and its diffusion approximation for the case of an exponential utility.  相似文献   

16.
This paper considers the asset price movements in a financial market with a risky asset and a bond. The dynamics of the risky asset, modeled by a marked point process, depend on a stochastic factor, modeled also by a marked point process. The possibility of common jump times with the price is allowed. The problem studied is to determine a strategy maximizing the expected value of a utility function of the hedging error. Two different approaches are considered: an Hamilton Jacobi Bellmann equation is studied for a simplified model and a contraction technique is introduced for a more general model.  相似文献   

17.
??In this paper, we investigate a robust optimal portfolio and reinsurance problem under inflation risk for an ambiguity-averse insurer (AAI), who worries about uncertainty in model parameters. We assume that the AAI is allowed to purchase proportional reinsurance and invest his/her wealth in a financial market which consists of a risk-free asset and a risky asset. The objective of the AAI is to maximize the minimal expected power utility of terminal wealth. By using techniques of stochastic control theory, closed-form expressions for the value function and optimal strategies are obtained.  相似文献   

18.
We propose a stochastic control approach to the dynamic maximization of robust utility functionals that are defined in terms of logarithmic utility and a dynamically consistent convex risk measure. The underlying market is modeled by a diffusion process whose coefficients are driven by an external stochastic factor process. In particular, the market model is incomplete. Our main results give conditions on the minimal penalty function of the robust utility functional under which the value function of our problem can be identified with the unique classical solution of a quasilinear PDE within a class of functions satisfying certain growth conditions. The fact that we obtain classical solutions rather than viscosity solutions facilitates the use of numerical algorithms, whose applicability is demonstrated in examples.  相似文献   

19.
本文研究了投资者在极端事件冲击下带通胀的最优投资组合选择问题, 其中投资者不仅对损失风险是厌恶的而且对模型不确定也是厌恶的. 投资者在风险资产和无风险资产中进行投资. 首先, 利用Ito公式推导考虑通胀的消费篮子价格动力学方程, 其次由通胀折现的终端财富预期效用最大化, 对含糊厌恶投资者的最优期望效用进行刻画. 利用动态规划原理, 建立最优消费和投资策略所满足的HJB方程. 再次, 利用市场分解的方法解出HJB方程, 获得投资者最优消费和投资策略的显式解. 最后, 通过数值模拟, 分析了含糊厌恶、风险厌恶、跳和通胀因素对投资者最优资产配置策略的影响.  相似文献   

20.
We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号