首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The system
$$\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u,{\kern 1pt} \frac{{dy}}{{dt}} = A\left( \cdot \right)y + B\left( \cdot \right)u + D\left( {C*y - v} \right)$$
where v = C*x is an output, u = S*y is a control, A(·) ∈ R n × n , B(·) ∈ R n × (np), C ∈ R n × (np), and D ∈ R n × (np), is considered. The elements αij(·) and βij(·) of the matrices A(·) and B(·) are arbitrary functionals satisfying the conditions
$$\mathop {\sup }\limits_{\left( \cdot \right)} |{\alpha _{ij}}\left( \cdot \right)| < \infty \left( {i,j \in 1,n} \right),\mathop {\sup }\limits_{\left( \cdot \right)} |{\beta _{ij}}\left( \cdot \right)| < \infty \left( {i \in 1,n,j \in 1,n - p} \right).$$
It is assumed that A(·) ∈ Z 1Z 3 and A*(·) ∈ Z 1Z 3, where Z 1 is the class of matrices in which the first p elements of the kth superdiagonal are sign-definite and the elements above them are sufficiently small. The class Z 3 differs from Z t1 in that the elements between this superdiagonal and the (k + 1)th row are sufficiently small. If k > p, then the elements of the p × p square in the upper left corner of the matrix are sufficiently small as well. By using special quadratic Lyapunov functions, a matrix D for which y(t)–x(t) → 0 exponentially as t → ∞ is first found, and then a matrix S for which the vectors x(t) and y(t) have the same property is constructed.
  相似文献   

2.
Let Ω R n be a bounded domain, H = L 2 (Ω), L : D(L) H → H be an unbounded linear operator, f ∈ C(■× R, R) and λ∈ R. The paper is concerned with the existence of positive solutions for the following nonlinear eigenvalue problem Lu = λf (x, u), u ∈ D(L), which is the general form of nonlinear eigenvalue problems for differential equations. We obtain the global structure of positive solutions, then we apply the results to some nonlinear eigenvalue problems for a second-order ordinary differential equation and a fourth-order beam equation, respectively. The discussion is based on the fixed point index theory in cones.  相似文献   

3.
In this paper we consider the random r-uniform r-partite hypergraph model H(n 1, n 2, ···, n r; n, p) which consists of all the r-uniform r-partite hypergraphs with vertex partition {V 1, V 2, ···, V r} where |V i| = n i = n i(n) (1 ≤ i ≤ r) are positive integer-valued functions on n with n 1 +n 2 +···+n r = n, and each r-subset containing exactly one element in V i (1 ≤ ir) is chosen to be a hyperedge of H pH (n 1, n 2, ···, n r; n, p) with probability p = p(n), all choices being independent. Let
$${\Delta _{{V_1}}} = {\Delta _{{V_1}}}\left( H \right)$$
and
$${\delta _{{V_1}}} = {\delta _{{V_1}}}\left( H \right)$$
be the maximum and minimum degree of vertices in V 1 of H, respectively;
$${X_{d,{V_1}}} = {X_{d,{V_1}}}\left( H \right),{Y_{d,{V_1}}} = {Y_{d,{V_1}}}\left( H \right)$$
,
$${Z_{d,{V_1}}} = {Z_{d,{V_1}}}\left( H \right)and{Z_{c,d,{V_1}}} = {Z_{c,d,{V_1}}}\left( H \right)$$
be the number of vertices in V 1 of H with degree d, at least d, at most d, and between c and d, respectively. In this paper we obtain that in the space H(n 1, n 2, ···, n r; n, p),
$${X_{d,{V_1}}},{Y_{d,{V_1}}},{Z_{d,{V_1}}}and{Z_{c,d,{V_1}}}$$
all have asymptotically Poisson distributions. We also answer the following two questions. What is the range of p that there exists a function D(n) such that in the space H(n 1, n 2, ···, n r; n, p),
$$\mathop {\lim }\limits_{n \to \infty } P\left( {{\Delta _{{V_1}}} = D\left( n \right)} \right) = 1$$
? What is the range of p such that a.e., H pH (n 1, n 2, ···, n r; n, p) has a unique vertex in V 1 with degree
$${\Delta _{{V_1}}}\left( {{H_p}} \right)$$
? Both answers are p = o (log n 1/N), where
$$N = \mathop \prod \limits_{i = 2}^r {n_i}$$
. The corresponding problems on
$${\delta _{{V_i}}}\left( {{H_p}} \right)$$
also are considered, and we obtained the answers are p ≤ (1 + o(1))(log n 1/N) and p = o (log n 1/N), respectively.
  相似文献   

4.
The paper studies the differential properties of functions of the form
$g(x) = \mathop {\max }\limits_{y \in Y} f(x,y),$
where xX (X is an open convex set from ? m ) and yY (Y is a compact from ? n ). Apart from the conventional smoothness conditions imposed on f(x, y), the condition of the concavity of g(x) on X is also imposed.
The differentiability of function g(x) on X is proved.The results of the study facilitate the derivation of the conditions ensuring the sufficiency of Pontryagin’s maximum principle.  相似文献   

5.
Let n ≥ 2 and let Ω ? ? n be an open set. We prove the boundedness of weak solutions to the problem
$$u \in W_0^1 L^\Phi \left( \Omega \right) and - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}}{{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u}{{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega ,$$
where ? is a Young function such that the space W 0 1 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, hL Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω = ? n .
  相似文献   

6.
We consider integrals of the form
$$I\left( {x,h} \right) = \frac{1}{{{{\left( {2\pi h} \right)}^{k/2}}}}\int_{{\mathbb{R}^k}} {f\left( {\frac{{S\left( {x,\theta } \right)}}{h},x,\theta } \right)} d\theta $$
, where h is a small positive parameter and S(x, θ) and f(τ, x, θ) are smooth functions of variables τ ∈ ?, x ∈ ? n , and θ ∈ ? k ; moreover, S(x, θ) is real-valued and f(τ, x, θ) rapidly decays as |τ| →∞. We suggest an approach to the computation of the asymptotics of such integrals as h → 0 with the use of the abstract stationary phase method.
  相似文献   

7.
We establish conditions under which three-dimensional relaxational systems of the form
$$\dot x = f(x,y,\mu ),\varepsilon \dot y = g(x,y),x = (x_1 ,x_2 ) \in \mathbb{R}^2 ,y \in \mathbb{R},$$
where 0 ≤ ε ? 1, |µ| ? 1, and f, gC , exhibit the so-called blue sky catastrophe [the appearance of a stable relaxational cycle whose period and length tend to infinity as µ tends to some critical value µ*(ε), µ*(0) = 0].
  相似文献   

8.
We consider the Dirichlet problem
$u_\Gamma = 0$
for the nonlinear differential equation
$\Delta u + \left| x \right|^m \left| u \right|^p = 0, x \in S,$
with constant m ≥ 0 and p > 1 in the unit ball S = {xR n : |x| < 1}(n ≥ 3) with the boundary Γ. We prove that with pm+n/n?2 this problem has a unique positive radially symmetric solution.
  相似文献   

9.
Consider the random entire function
$f(z) = \sum\limits_{n = 0}^\infty {{\phi _n}{a_n}{z^n}} $
, where the ? n are independent standard complex Gaussian coefficients, and the a n are positive constants, which satisfy
$\mathop {\lim }\limits_{x \to \infty } {{\log {a_n}} \over n} = - \infty $
.
We study the probability P H (r) that f has no zeroes in the disk{|z| < r} (hole probability). Assuming that the sequence a n is logarithmically concave, we prove that
$\log {P_H}(r) = - S(r) + o(S(r))$
, where
$S(r) = 2 \cdot \sum\limits_{n:{a_n}{r^n} \ge 1} {\log ({a_n}{r^n})} $
, and r tends to ∞ outside a (deterministic) exceptional set of finite logarithmic measure.
  相似文献   

10.
Let L be a Schrdinger operator of the form L =-? + V acting on L~2(R~n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R~n) denote the BMO space associated to the Schrdinger operator L on R~n. In this article, we show that for every f ∈ BMO_L(R~n) with compact support, then there exist g ∈ L~∞(R~n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R~n), where S_(μ,P)=∫(R_+~(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-~(t(L)~(1/2))}t0 on L~2(R~n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R~n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.  相似文献   

11.
In this paper, by the Aubry–Mather theory, it is proved that there are many periodic solutions and usual or generalized quasiperiodic solutions for relativistic oscillator with anharmonic potentials models d/dt(x/(1-|x|~2~(1/2))+ |x|~(α-1)x=p(t),where p(t) ∈ C~0(R~1) is 1-periodic and α 0.  相似文献   

12.
Let (X, d) be a compact metric and 0 < α < 1. The space Lip α (X) of Hölder functions of order α is the Banach space of all functions ? from X into \(\mathbb{K}\) such that ∥?∥ = max{∥?∥, L(?)} < ∞, where
$L(f) = sup\{ \left| {f(x) - f(y)} \right|/d^\alpha (x,y):x,y \in X, x \ne y\} $
is the Hölder seminorm of ?. The closed subspace of functions ? such that
$\mathop {\lim }\limits_{d(x,y) \to 0} \left| {f(x) - f(y)} \right|/d^\alpha (x,y) = 0$
is denoted by lip α (X). We determine the form of all bijective linear maps from lip α (X) onto lip α (Y) that preserve the Hölder seminorm.
  相似文献   

13.
We establish the weak Harnack estimates for locally bounded sub- and superquasiminimizers u of
$${\int}_{\Omega} f(x,u,\nabla u)\,dx $$
with f subject to the general structural conditions
$$|z|^{p(x)} - b(x)|y|^{p(x)}-g(x) \leq f(x,y,z) \leq \mu|z|^{p(x)} + b(x)|y|^{p(x)} + g(x), $$
where p : Ω →] 1, ∞[ is a variable exponent. The upper weak Harnack estimate is proved under the assumption that b, gL t (Ω) for some t > n/p ?, and the lower weak Harnack estimate is proved under the stronger assumption that b, gL (Ω). As applications we obtain the Harnack inequality for quasiminimizers and the fact that locally bounded quasisuperminimizers have Lebesgue points everywhere whenever b, gL (Ω). Throughout the paper, we make the standard assumption that the variable exponent p is logarithmically Hölder-continuous.
  相似文献   

14.
15.
Consider the second order discrete Hamiltonian systems Δ2u(n-1)-L(n)u(n) + ▽W (n, u(n)) = f(n),where n ∈ Z, u ∈ RN and W : Z × RN → R and f : Z → RN are not necessarily periodic in n. Under some comparatively general assumptions on L, W and f , we establish results on the existence of homoclinic orbits. The obtained results successfully generalize those for the scalar case.  相似文献   

16.
Let d(n) denote the number of positive divisors of the natural number n. The aim of this paper is to investigate the validity of the asymptotic formula
$\begin{array}{lll}\sum \limits_{x < n \leq x+h(x)}d(n)\sim h(x)\log x\end{array}$
for \({x \to + \infty,}\) assuming a hypothetical estimate on the mean
$\begin{array}{lll} \int \limits_X^{X+Y}(\Delta(x+h(x))-\Delta (x))^2\,{d}x, \end{array}$
which is a weakened form of a conjecture of M. Jutila.
  相似文献   

17.
We deal with anomalous diffusions induced by continuous time random walks - CTRW in ?n. A particle moves in ?n in such a way that the probability density function u(·, t) of finding it in region Ω of ?n is given by ∫Ωu(x, t)dx. The dynamics of the diffusion is provided by a space time probability density J(x, t) compactly supported in {t ≥ 0}. For t large enough, u satisfies the equation
$$u\left( {x,t} \right) = \left[ {\left( {J - \delta } \right)*u} \right]\left( {x,t} \right)$$
, where δ is the Dirac delta in space-time. We give a sense to a Cauchy type problem for a given initial density distribution f. We use Banach fixed point method to solve it and prove that under parabolic rescaling of J, the equation tends weakly to the heat equation and that for particular kernels J, the solutions tend to the corresponding temperatures when the scaling parameter approaches 0.
  相似文献   

18.
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:?????(-?)~mu(x)=u~p(x)/|x|~s,in R_+~n,u(x)=-?u(x)=…=(-?)~(m-1)u(x)=0,on ?R_+~n,(0.1)where m is any positive integer satisfying 02mn.We first prove that the positive solutions of(0.1)are super polyharmonic,i.e.,(-?)~iu0,i=0,1,...,m-1.(0.2) For α=2m,applying this important property,we establish the equivalence between (0.1) and the integral equation u(x)=c_n∫R_+~n(1/|x-y|~(n-α)-1/|x~*-y|~(n-α))u~p(y)/|y|~sdy,(0.3) where x~*=(x1,...,x_(n-1),-x_n) is the reflection of the point x about the plane R~(n-1).Then,we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of(0.3),in whichαcan be any real number between 0 and n.By some Pohozaev type identities in integral forms,we prove a Liouville type theorem—the non-existence of positive solutions for(0.1).  相似文献   

19.
We further develop the method, devised earlier by the authors, which permits finding closed-form expressions for the optimal controls by elastic boundary forces applied at two ends, x = 0 and x = l, of a string. In a sufficiently large time T, the controls should take the string vibration process, described by a generalized solution u(x, t) of the wave equation
$$u_{tt} (x,t) - u_{tt} (x,t) = 0,$$
from an arbitrary initial state
$$\{ u(x,0) = \varphi (x), u_t (x,0) = \psi (x)$$
to an arbitrary terminal state
$$\{ u(x,T) = \hat \varphi (x), u_t (x,T) = \hat \psi (x).$$
  相似文献   

20.
James Hirschorn 《Order》2016,33(1):133-185
A careful study is made of embeddings of posets which have a convex range. We observe that such embeddings share nice properties with the homomorphisms of more restrictive categories; for example, we show that every order embedding between two lattices with convex range is a continuous lattice homomorphism. A number of posets are considered; for one of the simplest examples, we prove that every product order embedding σ : ?? → ?? with convex range is of the form
$$ \sigma(x)(n)=\left( (x\circ g_{\sigma})+y_{\sigma}\right)(n) ~~~~\text{if}~ n\in K_{\sigma}, $$
(1)
and σ(x)(n) = y σ (n) otherwise, for all x ∈ ??, where K σ ? ?, g σ : K σ → ? is a bijection and y σ ∈ ??. The most complex poset examined here is the quotient of the lattice of Baire measurable functions, with codomain of the form ? I for some index set I, modulo equality on a comeager subset of the domain, with its ‘natural’ ordering.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号