首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 65 毫秒
1.
We propose a Gauss–Newton-type method for nonlinear constrained optimization using the exact penalty introduced recently by André and Silva for variational inequalities. We extend their penalty function to both equality and inequality constraints using a weak regularity assumption, and as a result, we obtain a continuously differentiable exact penalty function and a new reformulation of the KKT conditions as a system of equations. Such reformulation allows the use of a semismooth Newton method, so that local superlinear convergence rate can be proved under an assumption weaker than the usual strong second-order sufficient condition and without requiring strict complementarity. Besides, we note that the exact penalty function can be used to globalize the method. We conclude with some numerical experiments using the collection of test problems CUTE.  相似文献   

2.
We introduce two families of Newton-type methods for multiple roots with cubic convergence. A further Newton-type method for multiple roots with cubic convergence is presented that is related to quadrature. We also provide numerical tests that show that these new methods are competitive to other known methods for multiple roots.  相似文献   

3.
The semi-local convergence of a Newton-type method used to solve nonlinear equations in a Banach space is studied. We also give, as two important applications, convergence analyses of two classes of two-point Newton-type methods including a method mentioned in [5] and the midpoint method studied in [1], [2] and [12]. Recently, interest has been shown in such methods [3] and [4].  相似文献   

4.
This paper investigates the convergence of decoupled optimal power flow (DOPF) methods used in power systems. In order to make the analysis tractable, a rigorous mathematical reformation of DOPF is presented first to capture the essence of conventional heuristic decompositions. By using a nonlinear complementary problem (NCP) function, the Karush–Kuhn–Tucker (KKT) systems of OPF and its subproblems of DOPF are reformulated as a set of semismooth equations, respectively. The equivalent systems show that the sequence generated by DOPF methods is identical to the sequence generated by Gauss–Seidel methods with respect to nonsmooth equations. This observation motivates us to extend the classical Gauss–Seidel method to semismooth equations. Consequently, a so-called semismooth Gauss–Seidel method is presented, and its related topics such as algorithm and convergence are studied. Based on the new theory, a sufficient convergence condition for DOPF methods is derived. Numerical examples of well-known IEEE test systems are also presented to test and verify the convergence theorem.  相似文献   

5.
We consider some harmonic mappings related to hyperbolic Gauss mappings and Gauss mappings in the Obata sense.  相似文献   

6.
The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.  相似文献   

7.
A new active set Newton-type algorithm for the solution of inequality constrained minimization problems is proposed. The algorithm possesses the following favorable characteristics: (i) global convergence under mild assumptions; (ii) superlinear convergence of primal variables without strict complementarity; (iii) a Newton-type direction computed by means of a truncated conjugate gradient method. Preliminary computational results are reported to show viability of the approach in large scale problems having only a limited number of constraints.  相似文献   

8.
In the present paper,we study the restricted inexact Newton-type method for solving the generalized equation 0∈f(x)+F(x),where X and Y are Banach spaces,f:X→Y is a Frechet differentiable function and F:X■Y is a set-valued mapping with closed graph.We establish the convergence criteria of the restricted inexact Newton-type method,which guarantees the existence of any sequence generated by this method and show this generated sequence is convergent linearly and quadratically according to the particular assumptions on the Frechet derivative of f.Indeed,we obtain semilocal and local convergence results of restricted inexact Newton-type method for solving the above generalized equation when the Frechet derivative of f is continuous and Lipschitz continuous as well as f+F is metrically regular.An application of this method to variational inequality is given.In addition,a numerical experiment is given which illustrates the theoretical result.  相似文献   

9.
In this article, we solve nonlinear inverse problems by an evolution equation method which can be viewed as the continuous analogue of the Gauss–Newton method. Under certain conditions we prove the convergence and derive the rate of convergence when the discrepancy principle is coupled.  相似文献   

10.
In this paper we present a convergence analysis for the modified Gauss–Seidel methods given in Gunawardena et al. (Linear Algebra Appl. 154–156 (1991) 125) and Kohno et al. (Linear Algebra Appl. 267 (1997) 113) for consistent linear systems. We prove that the modified Gauss–Seidel method converges for some values of the parameters in the preconditioned matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号