首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

2.
This paper proposes a backstepping method to resolve the synchronization of discrete-time chaotic systems. The proposed scheme offers systematic design method for the synchronization of a class of discrete-time hyper-chaotic systems, which implies much complicated high-order chaotic systems can be used to improve the security in chaos communications. A well-known chaotic systems: generalized Henon map is considered as illustrative example to demonstrate the general applicability of backstepping design. Numerical simulations verify the effectiveness of the approach.  相似文献   

3.
A special full-state hybrid projective synchronization type is proposed in this paper. The anti-synchronization and complete synchronization can be achieved simultaneously in this new synchronization phenomenon. We point out how to realize this synchronization in chaotic systems: anti-synchronization in symmetrical coordinate subspace and complete synchronization in its normal coordinate subspace. Two illustrative examples, multi-scroll chaotic system by the partial Lyapunov stability theory, and a four-dimensional chaotic system by the invariance principle of differential equation are presented to exhibit this new synchronization.  相似文献   

4.
In this paper, a new function cascade synchronization method of chaos system is proposed to achieve generalized projective synchronization for chaotic systems. Based on Laypunov stability, the proposed synchronization technique is applied to three famous chaotic systems: the unified chaotic system, Liu system and Rössler system, which can make the states of two identical chaotic systems asymptotically synchronized by choosing different special suitable error functions. Numerical simulations are presented to show the effectiveness.  相似文献   

5.
A unify definition of generalized (complete, lag, anticipated) synchronization in discrete-time chaotic systems is proposed in this paper. Based on the contraction mapping theorem, a new general scheme is proposed for the generalized synchronization of discrete-time chaotic and hyper-chaotic systems. The well-known Hénon mapping and generalized hyper-chaotic Hénon mapping are chosen to illustrate the proposed scheme. Numerical simulations are also shown to verify the effectiveness of the proposed control method.  相似文献   

6.
This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then, some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller, the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to verify the validity of the proposed methods.  相似文献   

7.
A sliding mode synchronization controller is presented with RBF neural network for two chaotic systems in this paper. The compound disturbance of the synchronization error system consists of nonlinear uncertainties and exterior disturbances of chaotic systems. Based on RBF neural networks, a compound disturbance observer is proposed and the update law of parameters is given to monitor the compound disturbance. The synchronization controller is given based on the output of the compound disturbance observer. The designed controller can make the synchronization error convergent to zero and overcome the disruption of the uncertainty and the exterior disturbance of the system. Finally, an example is given to demonstrate the availability of the proposed synchronization control method.  相似文献   

8.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

9.
This paper addresses the Q-S synchronization between chaotic and/or hyper-chaotic systems. Based on the Lyapunov stability theorem, a general scheme for Q-S synchronization of chaotic and/or hyper-chaotic systems is proposed. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). Four illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed general scheme for Q-S synchronization.  相似文献   

10.
This paper mainly investigates adaptive generalized function projective synchronization of two different uncertain chaotic systems, which is a further extension of many existing projection synchronization schemes, such as modified projection synchronization, function projective synchronization and so on. On the basis of Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed, and some parameter update laws for estimating the unknown parameters of the systems are also gained. This technique is applied to achieve synchronization between Lorenz and Rössler chaotic systems. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

11.
This paper addresses the design of simple state feedback controllers for synchronization and anti-synchronization of chaotic oscillators under input saturation and disturbance. By employing sector condition, linear matrix inequality (LMI)-based sufficient conditions are derived to design (global or local) controllers for chaos synchronization. The proposed local synchronization strategy guarantees a region of stability in terms of difference between states of the master–slave systems. This region of stability can be enlarged by means of an LMI-based optimization algorithm, through which asymptotic synchronization of chaotic oscillators can be ensured for a large difference in their initial conditions. Further, a novel LMI-based robust control strategy is developed, for local synchronization of input-constrained chaotic oscillators, by providing an upper bound on synchronization error in terms of disturbance and initial conditions of chaotic systems. Moreover, the proposed robust state feedback control methodology is modified to provide an inaugural treatment for robust anti-synchronization of chaotic systems under input saturation and disturbance. The results of the proposed methodologies are verified through numerical simulations for synchronization and anti-synchronization of the master–slave chaotic Chua’s circuits under input saturation.  相似文献   

12.
In this paper the dual synchronization of chaotic systems via output feedback strategy is investigated. The slave chaotic systems are fed by a scalar signal generated by a linear combination of the master systems state variables. The sufficient condition and design procedure for dual synchronization are presented. The proposed method is applied for dual synchronization of the Lorenz–Rossler, Rossler–Chen and Duffing–Van der Pol chaotic systems through computer simulation. The results show the effectiveness and feasibility of the proposed algorithm.  相似文献   

13.
A fractional-order energy resources demand–supply system is proposed. A projective synchronization scheme is proposed as an extension on the synchronization scheme of Odibat et al. (2010). The scheme is applied to achieve projective synchronization of the chaotic fractional-order energy resource demand–supply systems. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.  相似文献   

14.
This work investigates Q-S synchronization of non-identical chaotic systems with unknown parameters and scaling function. The sufficient conditions for achieving Q-S synchronization with a double-desired scaling function of two different chaotic systems (including different dimensional systems) are derived based on the Lyapunov stability theory. By the adaptive control technique, the corresponding parameter update laws are proposed such that the Q-S synchronization of non-identical chaotic systems is to be obtained. Two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

15.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an approach for adaptive synchronization of uncertain chaotic systems is proposed using adaptive backstepping with tuning functions. Strong properties of global stability and asymptotic synchronization can be achieved. The proposed approach offers a systematic design procedure for adaptive synchronization of a large class of continuous-time chaotic systems in the chaos research literature. Simulation results are presented to show the effectiveness of the approach.  相似文献   

17.
This paper addresses the reliable universal synchronization problem between two coupled chaotic quadratic discrete systems. A general nonlinear control method of synchronization for coupled 2D and 3D quadratic dynamical systems in discrete-time is proposed. The proposed synchronization method is based on universal controllers. The synchronization results are derived theoretically using active control method and Lyapunov stability theory. Numerical simulations are performed to assess the performance of the presented analysis.  相似文献   

18.
This letter investigates the function projective synchronization between fractional-order chaotic systems. Based on the stability theory of fractional-order systems and tracking control, a controller for the synchronization of two fractional-order chaotic systems is designed. This technique is applied to achieve synchronization between the fractional-order Lorenz systems with different orders, and achieve synchronization between the fractional-order Lorenz system and fractional-order Chen system. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

19.
A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.  相似文献   

20.
A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号