首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the numerical solution of the initial value problemy=f(x,y), –1x1;y(–1)=y 0 a global integration method is derived and studied. The method goes as follows.At first the system of nonlinear equations is solved. The matrix (A i,k (n) ) of quadrature coefficients is nearly lower left triangular and the pointsx k,n ,k=1,2,...,n are the zeros ofP n P n–2, whereP n is the Legendre polynomial of degreen. It is showed that the errors From the valuesf(x i,n ,y i,n ),i=1,2,...,n an approximation polynomial is constructed. The approximation is Chebyshevlike and the error at the end of the interval of integration is particularly small.  相似文献   

2.
Letf: n (–, ] be a convex polyhedral function. We show that if any standard active set method for quadratic programming (QP) findsx(t)= arg min x ¦x¦2/2+t f(x) for somet> 0, then its final working set defines a simple equality QP subproblem, whose Lagrange multiplier can be used both for testing ift is large enough forx(t) to coincide with the normal minimizer off, and for increasingt otherwise. The QP subproblem may easily be solved via the matrix factorizations used for findingx(t). This opens up the way for efficient implementations. We also give finite methods for computing the whole trajectory {x(t)} t 0, minimizingf over an ellipsoid, and choosing penalty parameters inL 1QP methods for strictly convex QP.This research was supported by the State Committee for Scientific Research under Grant 8S50502206.  相似文献   

3.
Konrad Engel 《Combinatorica》1984,4(2-3):133-140
LetP be that partially ordered set whose elements are vectors x=(x 1, ...,x n ) withx i ε {0, ...,k} (i=1, ...,n) and in which the order is given byxy iffx i =y i orx i =0 for alli. LetN i (P)={x εP : |{j:x j ≠ 0}|=i}. A subsetF ofP is called an Erdös-Ko-Rado family, if for allx, y εF it holdsxy, x ≯ y, and there exists az εN 1(P) such thatzx andzy. Let ? be the set of all vectorsf=(f 0, ...,f n ) for which there is an Erdös-Ko-Rado familyF inP such that |N i (P) ∩F|=f i (i=0, ...,n) and let 〈?〉 be its convex closure in the (n+1)-dimensional Euclidean space. It is proved that fork≧2 (0, ..., 0) and \(\left( {0,...,0,\overbrace {i - component}^{\left( {\begin{array}{*{20}c} {n - 1} \\ {i - 1} \\ \end{array} } \right)}k^{i - 1} ,0,...,0} \right)\) (i=1, ...,n) are the vertices of 〈?〉.  相似文献   

4.
A basic integral equation of random fields estimation theory by the criterion of minimum of variance of the estimation error is of the form Rh = f, where and R(x, y) is a covariance function.The singular perturbation problem we study consists of finding the asymptotic behavior of the solution to the equation as 0.$$" align="middle" border="0"> The domain D can be an interval or a domain in Rn, n > 1. The class of operators R is defined by the class of their kernels R(x,y) which solve the equation Q(x, Dx)R(x, y) = P(x, Dx)δ(xy), where Q(x, Dx) and Px, Dx) are elliptic differential operators.  相似文献   

5.
The complementarity problem with a nonlinear continuous mappingf from the nonnegative orthantR + n ofR n intoR n can be written as the system of equationsF(x, y) = 0 and(x, y) R + 2n , whereF denotes the mapping from the nonnegative orthantR + 2n ofR 2n intoR + n × Rn defined byF(x, y) = (x 1y1,,xnyn, f1(x) – y1,, fn(x) – yn) for every(x, y) R + 2n . Under the assumption thatf is a uniformP-function, this paper establishes that the mappingF is a homeomorphism ofR + 2n ontoR + n × Rn. This result provides a theoretical basis for a new continuation method of tracing the solution curve of the one parameter family of systems of equationsF(x, y) = tF(x 0, y0) and(x, y) R + 2n from an arbitrary initial point(x 0, y0) R + 2n witht = 1 until the parametert attains 0. This approach is an extension of the one used in the polynomially bounded algorithm recently given by Kojima, Mizuno and Yoshise for solving linear complementarity problems with positive semi-definite matrices.  相似文献   

6.
Weighted mean convergence of Hakopian interpolation on the disk   总被引:1,自引:0,他引:1  
In this paper, we study weighted mean integral convergence of Hakopian interpolation on the unit disk D. We show that the inner product between Hakopian interpolation polynomial Hn(f;x,y) and a smooth function g(x,y) on D converges to that of f(x,y) and g(x,y) on D when n →∞, provided f(x,y) belongs to C(D) and all first partial derivatives of g(x,y) belong to the space LipαM(0 <α≤ 1). We further show that provided all second partial derivatives of g(x,y) also belong to the space LipαM and f(x,y) belongs to C1 (D), the inner product between the partial derivative of Hakopian interpolation polynomial (6)/(6)xHn(f;x,y) and g(x,y) on D converges to that between (6)/(6)xf(x,y) and g(x,y) on D when n →∞.  相似文献   

7.
Assume that a function f C[–1, 1] changes its convexity at a finite collection Y := {y 1, ... y s} of s points y i (–1, 1). For each n > N(Y), we construct an algebraic polynomial P n of degree n that is coconvex with f, i.e., it changes its convexity at the same points y i as f and
where c is an absolute constant, 2(f, t) is the second modulus of smoothness of f, and if s = 1, then N(Y) = 1. We also give some counterexamples showing that this estimate cannot be extended to the case of higher smoothness.  相似文献   

8.
Let (P) denote the vector maximization problem
where the objective functions f i are strictly quasiconcave and continuous on the feasible domain D, which is a closed and convex subset of R n . We prove that if the efficient solution set E(P) of (P) is closed, disconnected, and it has finitely many (connected) components, then all the components are unbounded. A similar fact is also valid for the weakly efficient solution set E w (P) of (P). Especially, if f i (i=1,...,m) are linear fractional functions and D is a polyhedral convex set, then each component of E w (P) must be unbounded whenever E w (P) is disconnected. From the results and a result of Choo and Atkins [J. Optim. Theory Appl. 36, 203–220 (1982.)] it follows that the number of components in the efficient solution set of a bicriteria linear fractional vector optimization problem cannot exceed the number of unbounded pseudo-faces of D.  相似文献   

9.
We considern-point Lagrange-Hermite extrapolation forf(x), x>1, based uponf(x i ),i=1(1)n, –1x i 1, including non-distinct pointsx i in confluent formulas involving derivatives. The problem is to find the pointsx i that minimize the factor in the remainderP n (x)f (n)()/n, –1<<x subject to the condition|P n (x)|M, –1x1,2n+1M2 n . The solution is significant only when a single set of pointsx i suffices for everyx>1. The problem is here completely solved forn=1(1)4. Forn>4 it may be conjectured that there is a single minimal , 0 rn, whererr(M) is a non-decreasing function ofM, P n (–1)=(–1) n M, and for 0rn–2, thej-th extremumP n (x e, j )=(–1) nj M,j=1(1)n–r–1 (except forM=M r ,r=1(1)n–1, whenj=1(1)n–r).  相似文献   

10.
A simple algorithm is described for inverting the operatorD x D y (D x andD y here and subsequently denote partial differentiation with respect tox andy respectively) which occurs in the iterative solution of the equationD x D y f (x, y)=g (x, y, f, D x f, D x 2 f,D x D y f, D y 2 f) when boundary values off(x,y) are given along the sides of the rectangle in thexy-plane whose corners are at the points (a,b); (a+(n+1)k,b); (a+(n+1)k,b+(n+1)h); (a,b+(n+1)h).Communication M. R. 43 of the Computation Department of the Mathematical Centre, Amsterdam.  相似文献   

11.
Let S={x1,…,xn} be a set of n distinct positive integers. For x,yS and y<x, we say the y is a greatest-type divisor of x in S if yx and it can be deduced that z=y from yz,zx,z<x and zS. For xS, let GS(x) denote the set of all greatest-type divisors of x in S. For any arithmetic function f, let (f(xi,xj)) denote the n×n matrix having f evaluated at the greatest common divisor (xi,xj) of xi and xj as its i,j-entry and let (f[xi,xj]) denote the n×n matrix having f evaluated at the least common multiple [xi,xj] of xi and xj as its i,j-entry. In this paper, we assume that S is a gcd-closed set and . We show that if f is a multiplicative function such that (fμ)(d)∈Z whenever and f(a)|f(b) whenever a|b and a,bS and (f(xi,xj)) is nonsingular, then the matrix (f(xi,xj)) divides the matrix (f[xi,xj]) in the ring Mn(Z) of n×n matrices over the integers. As a consequence, we show that (f(xi,xj)) divides (f[xi,xj]) in the ring Mn(Z) if (fμ)(d)∈Z whenever and f is a completely multiplicative function such that (f(xi,xj)) is nonsingular. This confirms a conjecture of Hong raised in 2004.  相似文献   

12.
We prove that if a closed planar setS is not a countable union of convex subsets, then exactly one of the following holds:
(a)  There is a perfect subsetPS such that for every pair of distinct pointsx, yεP, the convex closure ofx, y is not contained inS.
(b) (a)  does not hold and there is a perfect subsetPS such that for every pair of pointsx, yεP the convex closure of {x, y} is contained inS, but for every triple of distinct pointsx, y, zεP the convex closure of {x, y, z} is not contained inS.
We show that an analogous theorem is impossible for dimension greater than 2. We give an example of a compact planar set with countable degree of visual independence which is not a countable union of convex subsets, and give a combinatorial criterion for a closed set inR d not to be a countable union of convex sets. We also prove a conjecture of G. Kalai, namely, that a closed planar set with the property that each of its visually independent subsets has at most one accumulation point, is a countable union of convex sets. We also give examples of sets which possess a (small) finite degree of visual independence which are not a countable union of convex subsets.  相似文献   

13.
Copositive approximation of periodic functions   总被引:1,自引:0,他引:1  
Let f be a real continuous 2π-periodic function changing its sign in the fixed distinct points y i Y:= {y i } i∈ℤ such that for x ∈ [y i , y i−1], f(x) ≧ 0 if i is odd and f(x) ≦ 0 if i is even. Then for each nN(Y) we construct a trigonometric polynomial P n of order ≦ n, changing its sign at the same points y i Y as f, and
where N(Y) is a constant depending only on Y, c(s) is a constant depending only on s, ω 3(f, t) is the third modulus of smoothness of f and ∥ · ∥ is the max-norm. This work was done while the first author was visiting CPT-CNRS, Luminy, France, in June 2006.  相似文献   

14.
Solutions are obtained for the boundary value problem, y (n) + f(x,y) = 0, y (i)(0) = y(1) = 0, 0 i n – 2, where f(x,y) is singular at y = 0. An application is made of a fixed point theorem for operators that are decreasing with respect to a cone.  相似文献   

15.
Summary Letf be a self-map on a metric space (X, d). We give necessary and sufficient conditions for the sequences {f n x} (x X) to be equivalent Cauchy. As a typical application we get the following result. Letf be continuous and (X, d) be complete. If, for anyx, y X d(f n x, f n y) 0 and for somec > 0, this convergence is uniform for allx, y inX withd(x, y) c thenf has a unique fixed pointp, andf n x p, for eachx inX. This theorem includes among others results of Angelov, Browder, Edelstein, Hicks and Matkowski.  相似文献   

16.
Let a semialgebraic set be defined by a quantifier-free formula with atomic subformulas of the form fi>0, 0,1 i where the polynomials fi[X1,..., Xn] of degree deg (fi)<d have absolute value of the coefficients at most 2M. An algorithm is constructed which finds the connected components of the semialgebraic set (i.e., giving formulas for them) in a time that is polynomial inM (kd) ro(1). Collins' previously known method has a bound which is polynomial inM (kd) ro(1).Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 192, pp. 3–46, 1991.  相似文献   

17.
ForX a set the expression Prt(X) denotes the composition monoid of all functionsf X ×X. Fork a positive integer the letterk denotes also the set of all nonnegative integers less thank. Whenk > 1 the expression rk denotes the connected injective element {<i, i + 1>i k – 1} in Prt (k). We show for every word w=w(x,y) in a two-letter alphabet that if the equation w(x, y)=rk has a solution =y) 2Prt(k) then ¯w(x,y)=rk also has a solution in2Prt(k), where ¯w is the word obtained by spelling the wordw backwards. It is a consequence of this theorem that if for every finite setX and for everyf Prt(X) the equation w(x,y)=f has a solution in2Prt(X) then for every suchX andf the equation ¯w(x, y)=f has a solution in2Prt(X).Presented by J. Mycielski.  相似文献   

18.
Wei-Ping Liu  Honghui Wan 《Order》1993,10(2):105-110
For an ordered setP letP P denote the set of all isotone self-maps on P, that is, all mapsf fromP toP such thatxy impliesf(x)f(y), and let Aut (P) the set of all automorphisms onP, that is, all bijective isotone self-maps inP P . We establish an inequality relating ¦P P ¦ and ¦Aut(P)¦ in terms of the irreducibles ofP. As a straightforward corollary, we show that Rival and Rutkowski's automorphism conjecture is true for lattices. It is also true for ordered sets with top and bottom whose covering graphs are planar.Supported in part by NSERC (Grant no. A2507).Supported under an NSERC International Research Fellowship.  相似文献   

19.
A polynomial-time algorithm for a class of linear complementarity problems   总被引:6,自引:0,他引:6  
Given ann × n matrixM and ann-dimensional vectorq, the problem of findingn-dimensional vectorsx andy satisfyingy = Mx + q, x 0,y 0,x i y i = 0 (i = 1, 2,,n) is known as a linear complementarity problem. Under the assumption thatM is positive semidefinite, this paper presents an algorithm that solves the problem in O(n 3 L) arithmetic operations by tracing the path of centers,{(x, y) S: x i y i = (i = 1, 2,,n) for some > 0} of the feasible regionS = {(x, y) 0:y = Mx + q}, whereL denotes the size of the input data of the problem.  相似文献   

20.
Summary We consider the problem when a scalar function ofn variables can be represented in the form of a determinant det(f i (x j )), the so-called Casorati determinant off 1,f 2,,f n . The result is applied to the solution of some functional equations with unknown functionsH of two variables that involve determinants det(H(x i ,x j )).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号