首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
In this paper, we give a necessary and sufficient condition for the integrality of Cayley graphs over the dihedral group \(D_n=\langle a,b\mid a^n=b^2=1,bab=a^{-1}\rangle \). Moreover, we also obtain some simple sufficient conditions for the integrality of Cayley graphs over \(D_n\) in terms of the Boolean algebra of \(\langle a\rangle \), from which we find infinite classes of integral Cayley graphs over \(D_n\). In particular, we completely determine all integral Cayley graphs over the dihedral group \(D_p\) for a prime p.  相似文献   

2.
Let \(\Gamma \) be a distance-regular graph with diameter d and Kneser graph \(K=\Gamma _d\), the distance-d graph of \(\Gamma \). We say that \(\Gamma \) is partially antipodal when K has fewer distinct eigenvalues than \(\Gamma \). In particular, this is the case of antipodal distance-regular graphs (K with only two distinct eigenvalues) and the so-called half-antipodal distance-regular graphs (K with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with \(d+1\) distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance d from every vertex. This can be seen as a more general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.  相似文献   

3.
A graph G is called \(C_4\)-free if it does not contain the cycle \(C_4\) as an induced subgraph. Hubenko, Solymosi and the first author proved (answering a question of Erd?s) a peculiar property of \(C_4\)-free graphs: \(C_4\)-free graphs with n vertices and average degree at least cn contain a complete subgraph (clique) of size at least \(c'n\) (with \(c'= 0.1c^2\)). We prove here better bounds \(\big ({c^2n\over 2+c}\) in general and \((c-1/3)n\) when \( c \le 0.733\big )\) from the stronger assumption that the \(C_4\)-free graphs have minimum degree at least cn. Our main result is a theorem for regular graphs, conjectured in the paper mentioned above: 2k-regular \(C_4\)-free graphs on \(4k+1\) vertices contain a clique of size \(k+1\). This is the best possible as shown by the kth power of the cycle \(C_{4k+1}\).  相似文献   

4.
We consider a family \(M_t^n\), with \(n\geqslant 2\), \(t>1\), of real hypersurfaces in a complex affine n-dimensional quadric arising in connection with the classification of homogeneous compact simply connected real-analytic hypersurfaces in  \({\mathbb {C}}^n\) due to Morimoto and Nagano. To finalize their classification, one needs to resolve the problem of the embeddability of \(M_t^n\) in  \({\mathbb {C}}^n\) for \(n=3,7\). In our earlier article we showed that \(M_t^7\) is not embeddable in  \({\mathbb {C}}^7\) for every t and that \(M_t^3\) is embeddable in  \({\mathbb {C}}^3\) for all \(1<t<1+10^{-6}\). In the present paper, we improve on the latter result by showing that the embeddability of \(M_t^3\) in fact takes place for \(1<t<\sqrt{(2+\sqrt{2})/3}\). This is achieved by analyzing the explicit totally real embedding of the sphere \(S^3\) in \({\mathbb {C}}^3\) constructed by Ahern and Rudin. For \(t\geqslant {\sqrt{(2+\sqrt{2})/3}}\), the problem of the embeddability of \(M_t^3\) remains open.  相似文献   

5.
It has become common knowledge that constructing q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\) is significantly more difficult than constructing those with minimum distance less than or equal to \(q/2+1\). Despite of various constructions of q-ary quantum MDS codes, all known q-ary quantum MDS codes have minimum distance bounded by \(q/2+1\) except for some lengths. The purpose of the current paper is to provide some new q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\). In this paper, we provide several classes of quantum MDS codes with minimum distance bigger than \(q/2+1\). For instance, some examples in these classes include q-ary \([n,n-2k, k+1]\)-quantum MDS codes for cases: (i) \(q\equiv -1\bmod {5}, n=(q^2+4)/5\) and \(1\le k\le (3q-2)/5\); (ii) \(q\equiv -1\bmod {7}, n=(q^2+6)/7\) and \(1\le k\le (4q-3)/7\); (iii) \(2|q, q\equiv -1\bmod {3}, n=2(q^2-1)/3\) and \(1\le k\le (2q-1)/3\); and (iv) \(2|q, q\equiv -1\bmod {5}, n=2(q^2-1)/5\) and \(1\le k\le (3q-2)/5\).  相似文献   

6.
Given a word \(w=w_1w_2\cdots w_n\) of length n over an ordered alphabet \(\Sigma _k\), we construct a graph \(G(w)=(V(w), E(w))\) such that V(w) has n vertices labeled \(1, 2,\ldots , n\) and for \(i, j \in V(w)\), \((i, j) \in E(w)\) if and only if \(w_iw_j\) is a scattered subword of w of the form \(a_{t}a_{t+1}\), \(a_t \in \Sigma _k\), for some \(1 \le t \le k-1\) with the ordering \(a_t<a_{t+1}\). A graph is said to be Parikh word representable if there exists a word w over \(\Sigma _k\) such that \(G=G(w)\). In this paper we characterize all Parikh word representable graphs over the binary alphabet in terms of chordal bipartite graphs. It is well known that the graph isomorphism (GI) problem for chordal bipartite graph is GI complete. The GI problem for a subclass of (6, 2) chordal bipartite graphs has been addressed. The notion of graph powers is a well studied topic in graph theory and its applications. We also investigate a bipartite analogue of graph powers of Parikh word representable graphs. In fact we show that for G(w), \(G(w)^{[3]}\) is a complete bipartite graph, for any word w over binary alphabet.  相似文献   

7.
Let \(\varGamma \) be a distance-regular graph with diameter \(d \ge 2\). It is said to have classical parameters \((d, b, \alpha , \beta )\) when its intersection array \(\{b_0,b_1,\dots ,b_{d-1};c_1,c_2,\dots ,c_d\}\) satisfies
$$\begin{aligned} b_i= & {} ([d]_b - [i]_b)(\beta - \alpha [i]_b) \qquad \text {and} \qquad c_{i+1} = [i+1]_b (1 + \alpha [i]_b)\\&\quad (0 \le i \le d-1), \end{aligned}$$
where \([i]_b := 1 + b + \cdots + b^{i-1}\). Apart from the well-known families, there are many sets of classical parameters for which the existence of a corresponding graph is still open. It turns out that in most such cases we have either \(\alpha = b-1\) or \(\alpha = b\). For these two cases, we derive bounds on the parameter \(\beta \), which give us complete classifications when \(b = -2\). Distance-regular graphs with classical parameters are antipodal iff \(b=1\) and \(\beta =1+\alpha [d-1]_b\). If we drop the condition \(b=1\), it turns out that one obtains either bipartite or tight graphs. For the latter graphs, we find closed formulas for the parameters of the CAB partitions and the distance partition corresponding to an edge. Finally, we find a two-parameter family of feasible intersection arrays for tight distance-regular graphs with classical parameters \((d,b,b-1,b^{d-1})\) (primitive iff \(b \ne 1\)) and apply our results to show that it is realized only by d-cubes (\(b = 1\)).
  相似文献   

8.
For two given graphs \(G_1\) and \(G_2\), the Ramsey number \(R(G_1,G_2)\) is the least integer r such that for every graph G on r vertices, either G contains a \(G_1\) or \(\overline{G}\) contains a \(G_2\). In this note, we determined the Ramsey number \(R(K_{1,n},W_m)\) for even m with \(n+2\le m\le 2n-2\), where \(W_m\) is the wheel on \(m+1\) vertices, i.e., the graph obtained from a cycle \(C_m\) by adding a vertex v adjacent to all vertices of the \(C_m\).  相似文献   

9.
In this paper, we continue investigating the partition dimension for disconnected graphs. We determine the partition dimension for some classes of disconnected graphs G consisting of two components. If \(G=G_1 \cup G_2\), then we give the bounds of the partition dimension of G for \(G_1 = P_n\) or \(G_1=C_n\) and also for \(pd(G_1)=pd(G_2)\).  相似文献   

10.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号