首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iwao Sato 《Discrete Mathematics》2008,308(12):2600-2606
We define the weighted Bartholdi zeta function and a weighted L-function of a graph G, and give determinant expressions of them. Furthermore, we present a decomposition formula for the weighted Bartholdi zeta function of a regular covering of G by weighted L-functions of G.  相似文献   

2.
Since a zeta function of a regular graph was introduced by Ihara [Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 19 (1966) 219-235], many kinds of zeta functions and L-functions of a graph or a digraph have been defined and investigated. Most of the works concerning zeta and L-functions of a graph contain the following: (1) defining a zeta function, (2) defining an L-function associated with a (regular) graph covering, (3) providing their determinant expressions, and (4) computing the zeta function of a graph covering and obtaining its decomposition formula as a product of L-functions. As a continuation of those works, we introduce a zeta function of a weighted digraph and an L-function associated with a weighted digraph bundle. A graph bundle is a notion containing a cartesian product of graphs and a (regular or irregular) graph covering. Also we provide determinant expressions of the zeta function and the L-function. Moreover, we compute the zeta function of a weighted digraph bundle and obtain its decomposition formula as a product of the L-functions.  相似文献   

3.
We introduce a new type of the Bartholdi zeta function of a digraph D. Furthermore, we define a new type of the Bartholdi L-function of D, and give a determinant expression of it. We show that this L-function of D is equal to the L-function of D defined in [H. Mizuno, I. Sato, A new Bartholdi zeta function of a digraph, Linear Algebra Appl. 423 (2007) 498-511]. As a corollary, we obtain a decomposition formula for a new type of the Bartholdi zeta function of a group covering of D by new Bartholdi L-functions of D.  相似文献   

4.
Let K be a complete discrete valued field of characteristic zero with residue field kK of characteristic p>0. Let L/K be a finite Galois extension with Galois group G such that the induced extension of residue fields kL/kK is separable. Hesselholt (2004) [2] conjectured that the pro-abelian group {H1(G,Wn(OL))}nN is zero, where OL is the ring of integers of L and W(OL) is the ring of Witt vectors in OL w.r.t. the prime p. He partially proved this conjecture for a large class of extensions. In this paper, we prove Hesselholt?s conjecture for all Galois extensions.  相似文献   

5.
We extend Watanabe and Fukumizu’s Theorem on the edge zeta function to a regular covering of a graph G. Next, we define an edge L-function of a graph G, and give a determinant expression of it. As a corollary, we present a decomposition formula for the edge zeta function of a regular covering of G by a product of edge L-functions of G.  相似文献   

6.
We give a decomposition formula for the determinant det(I ? U(λ)) of the weighted bond scattering matrix U(λ) of a regular covering of G. Furthermore, we define an L-function of G, and give a determinant expression of it. As a corollary, we express some determinant of the weighted bond scattering matrix of a regular covering of G by means of its L-functions.  相似文献   

7.
We consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph and their (regular or irregular) covering graphs. Let L(G), M(G) and T(G) denote the line, middle and total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular, respectively) covering of a graph G is a (regular and irregular, respectively) covering of L(G), M(G) and T(G), respectively. For a regular graph G, we express the zeta functions of the line, middle and total graph of any (regular or irregular) covering of G in terms of the characteristic polynomial of the covering. Also, the complexities of the line, middle and total graph of any (regular or irregular) covering of G are computed. Furthermore, we discuss the L-functions of the line, middle and total graph of a regular graph G.  相似文献   

8.
Let K be a number field, H its Hilbert class field and L a Galois extension of K containing H. In this paper, we prove that L|H has a relative integral basis (RIB) if the order of G=Gal(L|H) is odd or if the 2-Sylow subgroups of G are not cyclic. If the order of G is even and the 2-Sylow subgroups are cyclic we reduce the problem of the existence of a RIB to a quadratic extension of H.  相似文献   

9.
We give a decomposition formula for the determinant on the bond scattering matrix of a regular covering of G. Furthermore, we define an L-function of G, and give a determinant expression of it. As a corollary, we express the determinant on the bond scattering matrix of a regular covering of G by means of its L-functions.  相似文献   

10.
11.
Akira Saito 《Discrete Mathematics》2009,309(16):5000-1723
We consider 2-factors with a bounded number of components in the n-times iterated line graph Ln(G). We first give a characterization of graph G such that Ln(G) has a 2-factor containing at most k components, based on the existence of a certain type of subgraph in G. This generalizes the main result of [L. Xiong, Z. Liu, Hamiltonian iterated line graphs, Discrete Math. 256 (2002) 407-422]. We use this result to show that the minimum number of components of 2-factors in the iterated line graphs Ln(G) is stable under the closure operation on a claw-free graph G. This extends results in [Z. Ryjá?ek, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224; Z. Ryjá?ek, A. Saito, R.H. Schelp, Closure, 2-factors and cycle coverings in claw-free graphs, J. Graph Theory 32 (1999) 109-117; L. Xiong, Z. Ryjá?ek, H.J. Broersma, On stability of the hamiltonian index under contractions and closures, J. Graph Theory 49 (2005) 104-115].  相似文献   

12.
We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph G and its directed line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and Kautz graphs.  相似文献   

13.
We write HG if every 2‐coloring of the edges of graph H contains a monochromatic copy of graph G. A graph H is Gminimal if HG, but for every proper subgraph H′ of H, H′ ? G. We define s(G) to be the minimum s such that there exists a G‐minimal graph with a vertex of degree s. We prove that s(Kk) = (k ? 1)2 and s(Ka,b) = 2 min(a,b) ? 1. We also pose several related open problems. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 167–177, 2007  相似文献   

14.
A graph G is k‐ordered if for every ordered sequence of k vertices, there is a cycle in G that encounters the vertices of the sequence in the given order. We prove that if G is a connected graph distinct from a path, then there is a number tG such that for every ttG the t‐iterated line graph of G, Lt (G), is (δ(Lt (G)) + 1)‐ordered. Since there is no graph H which is (δ(H)+2)‐ordered, the result is best possible. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 171–180, 2006  相似文献   

15.
We give a decomposition formula for the Bartholdi zeta function of a graph G which is partitioned into some irregular coverings. As a corollary, we obtain a decomposition formula for the Bartholdi zeta function of G which is partitioned into some regular coverings.  相似文献   

16.
It is proved that the choice number of every graph G embedded on a surface of Euler genus ε ≥ 1 and ε ≠ 3 is at most the Heawood number and that the equality holds if and only if G contains the complete graph KH(ε) as a subgraph. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 327–339, 1999  相似文献   

17.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier, A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260], and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (4) (2006) 281-300].  相似文献   

18.
This article is concerned with proving a refined function field analogue of the Coates–Sinnott conjecture, formulated in the number field context in 1974. Our main theorem calculates the Fitting ideal of a certain even Quillen K-group in terms of special values of L-functions. The techniques employed are directly inspired by recent work of Greither and Popescu in the equivariant Iwasawa theory of arbitrary global fields. They rest on the results of Greither and Popescu on the Galois module structure of certain naturally defined Picard 1-motives associated to an arbitrary Galois extension of function fields.  相似文献   

19.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

20.
Let l a prime number and K a Galois extension over the field of rational numbers, with Galois group G. A conjecture is put forward on l-adic independence of algebraic numbers, which generalizes the classical ones of Leopoldt and Gross, and asserts that the l-adic rank of a G submodule of Kx depends only on the character of its Galois representation. When G is abelian and in some other cases, a proof is given of this conjecture by using l-adic transcendence results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号