首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该文提出了一种一步估计方法用以估计变系数模型中具有互不相同光滑度的未知函数, 所有未知函数和它们的导数的估计量由 一次极小化得到. 给出了估计量的渐近性质, 包括渐近偏差、方差和渐近分布, 一步估计量被证明达到了最优收敛速度.  相似文献   

2.
Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations.  相似文献   

3.
The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear scheme and the integrated method are used to obtain local quantile estimators of all unknown functions in the FCPLR model. These resulting estimators are asymptotically normal, but each of them has big variance. To reduce variances of these quantile estimators, the one-step backfitting technique is used to obtain the efficient quantile estimators of all unknown functions, and their asymptotic normalities are derived. Two simulated examples are carried out to illustrate the proposed estimation methodology.  相似文献   

4.
用局部多项式估计法对删失数据下的系数函数光滑程度不同的变系数模型进行一步估计,达到了最优收敛速度,得出了渐近条件偏差和渐近条件方差。  相似文献   

5.
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.  相似文献   

6.
Based on adaptive type-II progressive hybrid censored data statistical analysis for constant-stress accelerated life test (CS-ALT) with products' lifetime following two-parameter generalized exponential (GE) distribution is investigated. The estimates of the unknown parameters and the reliability function are obtained through a new method combining the EM algorithm and the least square method. The observed Fisher information matrix is achieved with missing information principle, and the asymptotic unbiased estimate (AUE) of the scale parameter is also obtained. Confidence intervals (CIs) for the parameters are derived using asymptotic normality of the estimators and the percentile bootstrap (Boot-p) method. Finally, Monte Carlo simulation study is carried out to investigate the precision of the point estimates and interval estimates, respectively. It is shown that the AUE of the scale parameter is better than the corresponding two-step estimation, and the Boot-p CIs are more accurate than the corresponding asymptotic CIs.  相似文献   

7.
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.  相似文献   

8.
In this paper, the functional-coefficient partially linear regression (FCPLR) model is proposed by combining nonparametric and functional-coefficient regression (FCR) model. It includes the FCR model and the nonparametric regression (NPR) model as its special cases. It is also a generalization of the partially linear regression (PLR) model obtained by replacing the parameters in the PLR model with some functions of the covariates. The local linear technique and the integrated method are employed to give initial estimators of all functions in the FCPLR model. These initial estimators are asymptotically normal. The initial estimator of the constant part function shares the same bias as the local linear estimator of this function in the univariate nonparametric model, but the variance of the former is bigger than that of the latter. Similarly, initial estimators of every coefficient function share the same bias as the local linear estimates in the univariate FCR model, but the variance of the former is bigger than that of the latter. To decrease the variance of the initial estimates, a one-step back-fitting technique is used to obtain the improved estimators of all functions. The improved estimator of the constant part function has the same asymptotic normality property as the local linear nonparametric regression for univariate data. The improved estimators of the coefficient functions have the same asymptotic normality properties as the local linear estimates in FCR model. The bandwidths and the smoothing variables are selected by a data-driven method. Both simulated and real data examples related to nonlinear time series modeling are used to illustrate the applications of the FCPLR model.  相似文献   

9.
Composite quantile regression model with measurement error is considered. The SIMEX estimators of the unknown regression coefficients are proposed based on the composite quantile regression. The proposed estimators not only eliminate the bias caused by measurement error, but also retain the advantages of the composite quantile regression estimation. The asymptotic properties of the SIMEX estimation are proved under some regular conditions. The finite sample properties of the proposed method are studied by a simulation study, and a real example is analyzed.  相似文献   

10.
讨论了半变系数模型的变窗宽一步局部M-估计.用一步局部M-估计给出了未知函数的估计,用平均法给出了未知参数的估计,并在其中嵌入一个变窗宽加以提高,得到了未知函数和未知参数的渐近正态性.  相似文献   

11.
??Composite quantile regression model with measurement error is considered. The SIMEX estimators of the unknown regression coefficients are proposed based on the composite quantile regression. The proposed estimators not only eliminate the bias caused by measurement error, but also retain the advantages of the composite quantile regression estimation. The asymptotic properties of the SIMEX estimation are proved under some regular conditions. The finite sample properties of the proposed method are studied by a simulation study, and a real example is analyzed.  相似文献   

12.
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ( ).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method.  相似文献   

13.
We consider the problem of estimating the unknown parameters of linear regression in the case when the variances of observations depend on the unknown parameters of the model. A two-step method is suggested for constructing asymptotically linear estimators. Some general sufficient conditions for the asymptotic normality of the estimators are found, and an explicit form is established of the best asymptotically linear estimators. The behavior of the estimators is studied in detail in the case when the parameter of the regression model is one-dimensional.  相似文献   

14.
We consider a problem of estimating local smoothness of a spatially inhomogeneous function from noisy data under the framework of smoothing splines. Most existing studies related to this problem deal with estimation induced by a single smoothing parameter or partially local smoothing parameters, which may not be efficient to characterize various degrees of smoothness of the underlying function when it is spatially varying. In this paper, we propose a new nonparametric method to estimate local smoothness of the function based on a moving local risk minimization coupled with spatially adaptive smoothing splines. The proposed method provides full information of the local smoothness at every location on the entire data domain, so that it is able to understand the degrees of spatial inhomogeneity of the function. A successful estimate of the local smoothness is useful for identifying abrupt changes of smoothness of the data, performing functional clustering and improving the uniformity of coverage of the confidence intervals of smoothing splines. We further consider a nontrivial extension of the local smoothness of inhomogeneous two-dimensional functions or spatial fields. Empirical performance of the proposed method is evaluated through numerical examples, which demonstrates promising results of the proposed method.  相似文献   

15.
In this paper, we investigate a competing risks model based on exponentiated Weibull distribution under Type-I progressively hybrid censoring scheme. To estimate the unknown parameters and reliability function, the maximum likelihood estimators and asymptotic confidence intervals are derived. Since Bayesian posterior density functions cannot be given in closed forms, we adopt Markov chain Monte Carlo method to calculate approximate Bayes estimators and highest posterior density credible intervals. To illustrate the estimation methods, a simulation study is carried out with numerical results. It is concluded that the maximum likelihood estimation and Bayesian estimation can be used for statistical inference in competing risks model under Type-I progressively hybrid censoring scheme.  相似文献   

16.
给出了一种用于估计变系数模型中未知函数的逐元B-Spline方法,建立了估计量的局部渐近偏差,方差和渐近正态分布,开发了一种快速选择估计量窗宽的方法,通过Monte Carlo模拟研究了估计量的有限样本性质.  相似文献   

17.
Variable bandwidth and one-step local M-estimator   总被引:3,自引:0,他引:3  
A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of least-squares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the one-step local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations.  相似文献   

18.
In this paper we discuss the theory of one-step extrapolation methods applied both to ordinary differential equations and to index 1 semi-explicit differential-algebraic systems. The theoretical background of this numerical technique is the asymptotic global error expansion of numerical solutions obtained from general one-step methods. It was discovered independently by Henrici, Gragg and Stetter in 1962, 1964 and 1965, respectively. This expansion is also used in most global error estimation strategies as well. However, the asymptotic expansion of the global error of one-step methods is difficult to observe in practice. Therefore we give another substantiation of extrapolation technique that is based on the usual local error expansion in a Taylor series. We show that the Richardson extrapolation can be utilized successfully to explain how extrapolation methods perform. Additionally, we prove that the Aitken-Neville algorithm works for any one-step method of an arbitrary order s, under suitable smoothness.  相似文献   

19.
The ordinary least squares estimation is based on minimization of the squared distance of the response variable to its conditional mean given the predictor variable. We extend this method by including in the criterion function the distance of the squared response variable to its second conditional moment. It is shown that this “second-order” least squares estimator is asymptotically more efficient than the ordinary least squares estimator if the third moment of the random error is nonzero, and both estimators have the same asymptotic covariance matrix if the error distribution is symmetric. Simulation studies show that the variance reduction of the new estimator can be as high as 50% for sample sizes lower than 100. As a by-product, the joint asymptotic covariance matrix of the ordinary least squares estimators for the regression parameter and for the random error variance is also derived, which is only available in the literature for very special cases, e.g. that random error has a normal distribution. The results apply to both linear and nonlinear regression models, where the random error distributions are not necessarily known.  相似文献   

20.
讨论具有不同自变量的变系数模型的函数系数的估计及其大样本性质。使用局部线性方法和积分方法,得到函数系数的积分估计;由于该估计有较大的方差,进一步使用回切法改进这一估计,获得了函数系数的改进估计;同时,研究了改进估计的渐近正态性。最后,用模拟例子说明提出的估计方法是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号