首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
A graph X is called vertex-transitive, edge-transitive, or arc-transitive, if the automorphism group of X acts transitively on the set of vertices, edges, or arcs of X, respectively. X is said to be 1/2-transitive, if it is vertex-transitive, edge-transitive, but not arc-transitive.In this paper we determine all 1/2-transitive graphs with 3p vertices, where p is an odd prime. (See Theorem 3.4.)  相似文献   

2.
A tinted graph is a graph whose arcs are colored with certain colors. A colored graph is a graph whose vertices are colored with certain colors. If M is the set of tinted (or colored tinted) graphs of order k and G is a tinted (or colored tinted) graph, then we shall say that G is M-regular (or M-regularly colored) if all its subgraphs of order k belong to M. We shall show how, for any formula p of the first-order predicate calculus, to construct a finite set Bp of tinted graphs of order 3 and a finite set Cp of colored tinted graphs of order 2 such that ¦-p if and only if there exists a Bp-regular tinted graph not admitting a Cp-regular coloring. Hadwiger's conjecture (HC) is as follows: If no subgraph of a graph without loops G is contractible to a complete graph of order n, then the vertices of G can be colored in n–1 colors such that neighboring vertices are colored with different colors. We construct a formula X of the first-order predicate calculus such that HC is equivalent with X. Thus, HC reduces to HC1: if all subgraphs of order 3 of the tinted graph G belong to BX, then G is CX-regularly colorable. Here BX and CX are specific finite sets of tinted graphs of order 3 and colored tinted graphs of order 2, respectively.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 88, pp. 209–216, 1979.  相似文献   

3.
An undirected graph without isolated vertices is said to be semisymmetric if its full automorphism group acts transitively on its edge set but not on its vertex set. In this paper, we inquire the existence of connected semisymmetric cubic graphs of order 16p 2. It is shown that for every odd prime p, there exists a semisymmetric cubic graph of order 16p 2 and its structure is explicitly specified by giving the corresponding voltage rules generating the covering projections.  相似文献   

4.
An independent set of a graph is a subset of pairwise non-adjacent vertices. A complete bipartite set B is a subset of vertices admitting a bipartition B=XY, such that both X and Y are independent sets, and all vertices of X are adjacent to those of Y. If both X,Y≠∅, then B is called proper. A biclique is a maximal proper complete bipartite set of a graph. When the requirement that X and Y are independent sets of G is dropped, we have a non-induced biclique. We show that it is NP-complete to test whether a subset of the vertices of a graph is part of a biclique. We propose an algorithm that generates all non-induced bicliques of a graph. In addition, we propose specialized efficient algorithms for generating the bicliques of special classes of graphs.  相似文献   

5.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | sS}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | gG, sS}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010  相似文献   

6.
M. Abreu 《Discrete Mathematics》2008,308(10):1810-1815
Murty [A generalization of the Hoffman-Singleton graph, Ars Combin. 7 (1979) 191-193.] constructed a family of (pm+2)-regular graphs of girth five and order 2p2m, where p?5 is a prime, which includes the Hoffman-Singleton graph [A.J. Hoffman, R.R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. (1960) 497-504]. This construction gives an upper bound for the least number f(k) of vertices of a k-regular graph with girth 5. In this paper, we extend the Murty construction to k-regular graphs with girth 5, for each k. In particular, we obtain new upper bounds for f(k), k?16.  相似文献   

7.
In this article we study Hamilton cycles in sparse pseudo‐random graphs. We prove that if the second largest absolute value λ of an eigenvalue of a d‐regular graph G on n vertices satisfies and n is large enough, then G is Hamiltonian. We also show how our main result can be used to prove that for every c >0 and large enough n a Cayley graph X (G,S), formed by choosing a set S of c log5 n random generators in a group G of order n, is almost surely Hamiltonian. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 17–33, 2003  相似文献   

8.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

9.
Ru-Ji Wang 《代数通讯》2013,41(3):915-927
A simple undirected graph X is said to be ½-transitive if the automorphism group AutX of X acts transitively onthe vertices and edges, but not on the arcs of X. In this pape we determine all ½-transitive graphs of order a product of two distinct primes  相似文献   

10.
Multithreshold graphs are defined in terms of a finite sequence of real thresholds that break the real line into a set of regions, alternating between NO and YES. If real ranks can be assigned to the vertices of a graph in such a way that two vertices are adjacent iff the sum of their ranks lies in a YES region, then that graph is a multithreshold graph with respect to the given set of thresholds. If a graph can be represented with k or fewer thresholds, then it is k-threshold. The case of one threshold is the classical case introduced by Chvátal and Hammer. In this paper, we show for every graph G, there is a k such that G is k-threshold, and we exhibit graphs for which the required number of thresholds is linear in the order of the graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号