首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The effects on time-simulation by automatic control of step-size is presented to simulate the behavior of Chua’s circuit, which consist of five circuit elements: one linear resistor, one inductor, two capacitors and one nonlinear resistor known as Chua’s diode. The last element is modeled by an IV piecewise-linear function to formulate a system of state-variables equations, which are solved by applying multistep methods with automatic control of step-size to simulate the generation of chaotic phenomena. It is highlighted the speed-up in time simulation to estimate the values of the circuit elements, so that the synthesis of Chua’s diode can be realized directly using novel electronic circuits.  相似文献   

2.
An adaptive feedback control of linearizable chaotic systems   总被引:5,自引:0,他引:5  
This paper proposes an adaptive feedback controller for a class of chaotic systems. This controller can be used for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on Lyapunov approach, the adaptation law is determined to tune the controller gain vector in order to track a predetermined linearizing feedback control. To demonstrate the efficiency of the proposed scheme, two well-known chaotic systems namely Chua’s circuit and a Lur’e-like system are considered as illustrative examples.  相似文献   

3.
Linear generalized synchronization of continuous-time chaotic systems   总被引:3,自引:0,他引:3  
This paper develops a general approach for constructing a response system to implement linear generalized synchronization (GS) with the drive continuous-time chaotic system. Some sufficient conditions of global asymptotic linear GS between the drive and response continuous-time chaotic systems are attained from rigorously modern control theory. Finally, we take Chua’s circuit as an example for illustration and verification.  相似文献   

4.
Based on stability theory of impulsive differential equation and new comparison theory of impulsive differential system, we study the chaos impulsive synchronization of two coupled chaotic systems using the unidirectional linear error feedback scheme. Some generic conditions of chaos impulsive synchronization of two coupled chaotic systems are derived, and to apply the conditions to typical chaotic system––the original Chua’s circuit. The example illustrates the effectiveness of the proposed result.  相似文献   

5.
Observer-based chaotic synchronization in the presence of unknown inputs   总被引:3,自引:0,他引:3  
This paper deals with the problem of synchronization of chaotic dynamical systems. We consider a drive-response type of synchronization via a scalar transmitted signal. Unlike most works we consider the presence of some unknown inputs in the drive system and that no knowledge about their nature is available. A reduced-order observer-based response system is designed to synchronize with the missing states. We show that under some assumptions the synchronization is exponentially achieved. The efficiency of our method is confirmed by numerical simulations of two well-known chaotic systems: Chua’s circuit and Lur’e system.  相似文献   

6.
In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua’s circuit.  相似文献   

7.
The paper treats the question of robust control of chaos in Chua’s circuit based on the internal model principle. The Chua’s diode has polynomial non-linearity and it is assumed that the parameters of the circuit are not known. A robust control law for the asymptotic regulation of the output (node voltage) along constant and sinusoidal reference trajectories is derived. For the derivation of the control law, the non-linear regulator equations are solved to obtain a manifold in the state space on which the output error is zero and an internal model of the k-fold exosystem (k = 3 here) is constructed. Then a feedback control law using the optimal control theory or pole placement technique for the stabilization of the augmented system including the Chua’s circuit and the internal model is derived. In the closed-loop system, robust output node voltage trajectory tracking of sinusoidal and constant reference trajectories are accomplished and in the steady state, the remaining state variables converge to periodic and constant trajectories, respectively. Simulation results are presented which show that in the closed-loop system, asymptotic trajectory control, disturbance rejection and suppression of chaotic motion in spite of uncertainties in the system are accomplished.  相似文献   

8.
Chaotic systems exhibit an erratic behavior reflected by a strong divergence of trajectories with arbitrarily close initial condition. In this way, similar to trajectories from pseudorandom number generators, chaotic trajectories can be seen as noise with some degree of correlation. This work focuses on the study of some correlation properties (i.e., scaling) of chaotic trajectories from the Chua’s system. This is done by using detrended fluctuation analysis, which is a method designed for the detection of correlations in stochastic time series. It is found that, in general, Chua’s trajectories behave as a Brownian motion for small time scales, while they can display a white noise-like behavior or be dominated by harmonic oscillations for large time scales.  相似文献   

9.
In this paper, a new observer is proposed for the synchronization problem, this new observer presents a simple structure that contains a sliding mode term which turns out to be robust against output noises as well as sustained disturbances, the slave system is a pure sliding-mode observer. As far as we know in the literature this class of observers have not been used in the synchronization problem. Comparisons with other two model-based observers, Thau observer and Bestle-Zeitz observer, are proposed. The performances of these observers are shown by using Lorenz system and Chua’s circuit.  相似文献   

10.
The direct design approach based on tridiagonal structure combines the structure analysis with the design of stabilizing controller and the original nonlinear affine systems is transformed into a stable system with special tridiagonal structure using the method. In this study, the direct method is proposed for synchronizing chaotic systems. There are several advantages in this method for synchronizing chaotic systems: (a) it presents an easy procedure for selecting proper controllers in chaos synchronization; (b) it constructs simple controllers easy to implement. Examples of Lorenz system, Chua’s circuit and Duffing system are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号