首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
We consider a scheduling problem in which n jobs are grouped into F groups and are to be processed on a single machine. A machine setup time is required when the machine switches from one group of jobs to the other. All jobs have a common due date that needs to be determined. The objective is to find an optimal common due date and an optimal sequence of jobs to minimize the sum of the cost of tardy jobs and the cost related to the common due date. We consider two cases:
  • 1.(i) the jobs have to be processed in groups; and
  • 2.(ii) the jobs do not have to be processed in groups.
Analytical results are presented and computational algorithms are developed.  相似文献   

2.
In this paper we consider the problem of scheduling n jobs on a single batch processing machine in which jobs are ordered by two customers. Jobs belonging to different customers are processed based on their individual criteria. The considered criteria are minimizing makespan and maximum lateness. A batching machine is able to process up to b jobs simultaneously. The processing time of each batch is equal to the longest processing time of jobs in the batch. This kind of batch processing is called parallel batch processing. Optimal methods for three cases are developed: unbounded batch capacity, b > n, with compatible job groups and bounded batch capacity, b  n, with compatible and non compatible job groups. Each job group represents a different class of customers and the concept of being compatible means that jobs which are ordered by different customers are allowed to be processed in a same batch. We propose an optimal method for the problem with incompatible groups and unbounded batches. About the case when groups are incompatible and bounded batches, our proposed method is considered as optimal when the group with maximum lateness objective has identical processing times. We regard this method, however, as a heuristic when these processing times are different. When groups are compatible and batches are bounded we consider another problem by assuming the same processing times for the group which has the maximum lateness objective and propose an optimal method for this problem.  相似文献   

3.
This paper presents an optimal scheduling algorithm for minimizing set-up costs in the parallel processing shop while meeting workload balancing restrictions.There are M independent batch type jobs which have sequence dependent set-up costs and N parallel processing machines. Each of the M jobs must be processed on exactly one of the N available machines. It is desirable to minimize total changeover costs with the restriction that each machine workload assignment T n be within P units of the average machine assignment. The paper describes a static problem in which all jobs are available at time zero. The sequence dependent change over costs are identical for each machine. An extension of the algorithm handles nonidentical processor problems.A combinatorial programming approach to the problem is used. For the special case of identical processors, the problem can be treated as a multi-salesman travelling salesman problem. A general branch and bound algorithm and numerical results are given.  相似文献   

4.
We study a scheduling problem with deteriorating jobs, that is, jobs whose processing times are an increasing function of their start times. We consider the case of a single machine and linear job-independent deterioration. The problem is to determine an optimal combination of the due-date and schedule so as to minimize the sum of due-date, earliness and tardiness penalties. We give an O(n log n) time algorithm to solve this problem.  相似文献   

5.
This paper studies a hierarchical optimization problem on an unbounded parallel-batching machine, in which two objective functions are maximum lateness induced by two sets of due dates, representing different purposes of two decision-makers. By a hierarchical optimization problem, we mean the problem of optimizing the secondary criterion under the constraint that the primary criterion is optimized. A parallel-batching machine is a machine that can handle several jobs in a batch in which all jobs start and complete respectively at the same time. We present an \(O(n\log P)\)-time algorithm and an \(O(n^3)\)-time algorithm for this hierarchical scheduling problem, where P is the total processing time of all jobs.  相似文献   

6.
Minimizing Completion Time Variance with Compressible Processing Times   总被引:1,自引:0,他引:1  
We introduce a new formulation of the standard completion time variance (CTV) problem with n jobs and one machine, in which the job sequence and the processing times of the jobs are all decision variables. The processing time of job i (i=1, ,n) can be compressed by an amount within [li, ui], which however will incur a compression cost. The compression cost is a general convex non-decreasing function of the amount of the job processing time compressed. The objective is to minimize a weighted combination of the completion time variance and the total compression cost. We show that, under an agreeable condition on the bounds of the processing time compressions, a pseudo-polynomial algorithm can be derived to find an optimal solution for the problem. Based on the pseudo-polynomial time algorithm, two heuristic algorithms H1 and H2 are proposed for the general problem. The relative errors of both heuristic algorithms are guaranteed to be no more than , where is a measure of deviation from the agreeable condition. While H1 can find an optimal solution for the agreeable problem, H2 is dominant for solving the general problem. We also derive a tight lower bound for the optimal solution of the general problem. The performance of H2 is evaluated by complete enumeration for small n, and by comparison with this tight lower bound for large n. Computational results (with n up to 80) are reported, which show that the heuristic algorithm H2 in general can efficiently yield near optimal solutions, when n is large.  相似文献   

7.
This paper considers the problem of optimal assignment of total-work-content due-dates to n jobs and of sequencing them on a single machine to minimize an objective function depending on the assigned due-date multiple value and maximum tardiness penalty. It is shown that both the earliest due-date and shortest processing time orders yield an optimal sequence. A simple analytical solution method is presented to find the optimal due-dates. After the theoretical treatment an illustrative example is presented for discussion.  相似文献   

8.
In this paper, we consider single-machine due window assignment and scheduling with a common flow allowance and controllable job processing times, subject to unlimited or limited resource availability. Due window assignment with a common flow allowance means that each job has a job-dependent due window, the starting time and completion time of which are equal to its actual processing time plus the job-independent parameters q1 and q2, respectively, which are common to all the jobs. The processing time of each job is either a linear or a convex function of the amount of a common continuously divisible resource allocated to the job. We study five versions of the problem that differ in terms of the objective function and processing time function being used. We provide structural properties of the optimal schedules and polynomial-time solution algorithms for the considered problems.  相似文献   

9.
We consider the problem of scheduling n groups of jobs on a single machine where three types of decisions are combined: scheduling, batching and due-date assignment. Each group includes identical jobs and may be split into batches; jobs within each batch are processed jointly. A sequence independent machine set-up time is needed between each two consecutively scheduled batches of different groups. A due-date common to all jobs has to be assigned. A schedule specifies the size of each batch, i.e. the number of jobs it contains, and a processing order for the batches. The objective is to determine a value for the common due-date and a schedule so as to minimize the sum of the due date assignment penalty and the weighted number of tardy jobs. Several special cases of this problem are shown to be ordinary NP-hard. Some cases are solved in O(n log n) time. Two pseudopolynomial dynamic programming algorithms are presented for the general problem, as well as a fully polynomial approximation scheme.  相似文献   

10.
We consider a due-window assignment problem on identical parallel machines, where the jobs have equal processing times and job-dependent earliness-tardiness costs. We would like to determine a ‘due window’ during which the jobs can be completed at no cost and to obtain a job schedule in which the jobs are penalized if they finish before or after the due window. The objective is to minimize the total earliness and tardiness job penalty, plus the cost associated with the size of the due window. We present an algorithm that can solve this problem in O(n3) time, which is an improvement of the O(n4) solution procedure developed by Mosheiov and Sarig.  相似文献   

11.
In this paper, we consider a single-machine common due-window assignment scheduling problem with deteriorating jobs. Jobs’ processing times are defined by function of their starting times and job-dependent deterioration rates that are related to jobs and are not all equal. The objective is to determine an optimal combination of sequence and common due-window location so as to minimize the weighted sum of earliness, tardiness and due-window location penalties. We propose an O(n2 log n) time algorithm to solve the problem and discuss several instances to illustrate it.  相似文献   

12.
A proportionate flowshop is a special case of the classical flowshop, where the job processing times are machine-independent. We study the problem of minimizing the number of early jobs in this machine setting. This objective function has hardly been investigated on a single machine, and never on a flowshop. We introduce an efficient iterative solution algorithm. In each iteration, a single job is moved to the first position (and is added to the set of early jobs), and the remaining jobs are rescheduled such that the maximum earliness is minimized. The algorithm guarantees an optimal solution in O(n3) time, where n is the number of jobs.  相似文献   

13.
This paper studies the assignment of M unique machines to M equally spaced locations along a linear material handling track with the objective of minimizing the cost of (jobs) backtracking (i.e. moving upstream). Because of the arrangement of machines and restrictions imposed by the sequence of operations for each job, some jobs may have to backtrack to complete required processing on different machines. This problem is formulated as a quadratic assignment problem. An optimal solution to a problem with large M is computationally intractable. The backtracking distance matrix in problems involving equally-spaced machine locations in one dimension is seen to possess some unique characteristics called amoebic properties. Ten amoebic properties have been identified and exploited to devise a heuristic and a lower bound on the optimal solution. Results which describe the performance of the heuristic and the lower bound are presented.  相似文献   

14.
We study a problem of scheduling deteriorating jobs, i.e. jobs whose processing times are an increasing function of their starting times. We consider the case of a single machine and linear job-independent deterioration. The objective is to minimize the sum of weighted completion times, with weights proportional to the basic processing times. The optimal schedule is shown to be Λ-shaped, i.e. the sequence of the basic processing times has a single local maximum. Moreover, we show that the problem is solved in O(N log N) time. In the last section we test heuristics for the case of general weights.  相似文献   

15.
研究带有固定区间的两个代理单机排序问题.第一个代理工件可中断,且工件到达时间与工期满足一致关系,目标函数为最小化总误工.第二个代理工件被安排在固定时间窗口.目标是寻找一个排序,使得满足第二个代理目标可行情况下,第一个代理目标函数值最小.在固定区间等于加工时间的情况下,利用分块原则,提出了一个伪多项式时间动态规划算法,并给出了固定区间大于加工时间情况下的时间复杂度分析.  相似文献   

16.
We provide a unified model for solving single machine scheduling problems with controllable processing times in polynomial time using positional penalties. We show how this unified model can be useful in solving three different groups of scheduling problems. The first group includes four different due date assignment problems to minimize an objective function which includes costs for earliness, tardiness, due date assignment, makespan and total resource consumption. The second group includes three different due date assignment problems to minimize an objective function which includes the weighted number of tardy jobs, due date assignment costs, makespan and total resource consumption costs. The third group includes various scheduling problems which do not involve due date assignment decisions. We show that each of the problems from the first and the third groups can be reduced to a special case of our unified model and thus can be solved in O(n3)O(n3) time. Furthermore, we show how the unified model can be used repeatedly as a subroutine to solve all problems from the second group in O(n4)O(n4) time. In addition, we also show that faster algorithms exist for several special cases.  相似文献   

17.
We study a single machine slack due date assignment (usually referred to as SLK) scheduling problem with deteriorating jobs and a rate-modifying activity. The deterioration effect manifest such that the job processing time is a function of its starting time in a sequence. The rate-modifying activity is an activity that changes the processing rate of machine, i.e., the machine performs a rate-modifying activity. Hence the actual processing time of a job is a variable, which depends not only on its starting time in a sequence but also on whether it is scheduled before or after a rate-modifying activity. The goal is to schedule the rate-modifying activity, the optimal common flow allowance and the sequence of jobs to minimize the total earliness, the total tardiness and the common flow allowance cost. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

18.
We study a problem of scheduling n jobs on a single machine in batches. A batch is a set of jobs processed contiguously and completed together when the processing of all jobs in the batch is finished. Processing of a batch requires a machine setup time dependent on the position of this batch in the batch sequence. Setup times and job processing times are continuously controllable, that is, they are real-valued variables within their lower and upper bounds. A deviation of a setup time or job processing time from its upper bound is called a compression. The problem is to find a job sequence, its partition into batches, and the values for setup times and job processing times such that (a) total job completion time is minimized, subject to an upper bound on total weighted setup time and job processing time compression, or (b) a linear combination of total job completion time, total setup time compression, and total job processing time compression is minimized. Properties of optimal solutions are established. If the lower and upper bounds on job processing times can be similarly ordered or the job sequence is fixed, then O(n3 log n) and O(n5) time algorithms are developed to solve cases (a) and (b), respectively. If all job processing times are fixed or all setup times are fixed, then more efficient algorithms can be devised to solve the problems.  相似文献   

19.
We study the problem of scheduling n non-preemptive jobs on m unrelated parallel machines. Each machine can process a specified subset of the jobs. If a job is assigned to a machine, then it occupies a specified time interval on the machine. Each assignment of a job to a machine yields a value. The objective is to find a subset of the jobs and their feasible assignments to the machines such that the total value is maximized. The problem is NP-hard in the strong sense. We reduce the problem to finding a maximum weight clique in a graph and survey available solution methods. Furthermore, based on the peculiar properties of graphs, we propose an exact solution algorithm and five heuristics. We conduct computer experiments to assess the performance of our and other existing heuristics. The computational results show that our heuristics outperform the existing heuristics.  相似文献   

20.
The sequential production of identical jobs and the flow-shop machine setting are extremely common in real-life applications. We study a scheduling problem that combines these two elements: jobs of identical processing time, with job-dependent weights, and a given common due date processed on an m-machine flow-shop. The (just-in-time) objective is to minimize the maximum earliness/tardiness cost. We introduce a polynomial time solution in both cases of (i) a non-restrictive (ie, sufficiently large) due date, and (ii) a restrictive due date (which restricts the number of early jobs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号