首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
针对带非线性源项的变系数双侧空间回火分数阶对流-扩散方程,采用隐式中点法离散一阶时间偏导数,中心差商公式离散对流项,用二阶回火加权移位差分算子逼近左、右Riemann-Liouville空间回火分数阶偏导数,构造了一类新的数值格式.证明了数值方法的稳定性和收敛性,且方法在时间和空间均为二阶收敛.数值试验验证了数值方法的理论分析结果.  相似文献   

2.
当初值不光滑时,时间分数阶齐次扩散方程数值方法的精度会下降.为了得到高阶时间收敛格式,提出加权移位的Grünwald-Letnikov的修正格式,运用Lubich的修正方法,得到非光滑时间分数阶齐次扩散方程的收敛阶仍为O(k2).最后,通过数值算例验证了数值计算结果与理论计算结果一致.  相似文献   

3.
该文以再生核理论为基础,用移位Legendre多项式作为基函数构造了一个新的再生核空间,并给出了该空间下的再生核函数.与经典的再生核函数有所不同的是该空间下的再生核函数不再是分段函数,因此可以减小分数阶算子作用在核函数上时的计算量,使近似解更为精确.数值算例表明该方法的有效性.  相似文献   

4.
高兴华  李宏  刘洋 《计算数学》2021,43(4):493-505
本文考虑了分布阶时间分数阶扩散波动方程,其中时间分数阶导数是在Caputo意义上定义的,其阶次$\alpha,\beta$分别属于(0,1)和(1,2).文中提出了在计算上行之有效的数值方法来模拟分布阶时间分数阶扩散波动方程.在时间上,通过中点求积公式把分布阶项转换为多项的时间分数阶导数项,并且利用$L1$和$L2$公式来近似Caputo分数阶导数;空间上使用Galerkin有限元方法进行离散.给出了基于$H^1$范数的有限元解的稳定性和误差估计的详细证明,最后的数值算例结果说明了理论分析的正确性以及有效性.  相似文献   

5.
本文用隐式中点方法离散一阶时间偏导数,并用拟紧差分算子逼近Riemann-Liouville空间分数阶偏导数,构造了求解带非线性源项的空间分数阶扩散方程的数值格式.给出了数值方法的稳定性和收敛性分析.数值试验表明数值方法是有效的.  相似文献   

6.
邱泽山  曹学年 《计算数学》2021,43(2):210-226
基于已有的针对单侧正规化回火分数阶扩散方程的三阶拟紧算法,将该算法的思想应用于带漂移的单侧正规化回火分数阶扩散方程的数值模拟,并结合Crank-Nicolson方法导出数值格式.证明了数值格式的稳定性与收敛性,且数值格式的时间收敛阶和空间收敛阶分别是二阶和三阶.通过数值试验验证了数值格式的有效性和理论结果.  相似文献   

7.
本文针对带非线性源项的Riesz回火分数阶扩散方程,利用预估校正方法离散时间偏导数,并用修正的二阶Lubich回火差分算子逼近Riesz空间回火的分数阶偏导数,构造出一类新的数值格式.给出了数值格式在一定条件下的稳定性与收敛性分析,且该格式的时间与空间收敛阶均为二阶.数值试验表明数值方法是有效的.  相似文献   

8.
分数阶微分方程的理论和数值方法研究   总被引:3,自引:0,他引:3  
分数阶偏微分方程的研究有很长的历史,并在最近十多年得到快速发展.相比极为有限的理论成果,数值方法的研究成果已经相当丰富,几个国际研究团队对此作出了贡献.本文旨在对分数阶微分方程的理论与数值方法研究成果做个简要的评价,聚焦总结评述与高阶方法发展密切相关的研究.主要内容为讨论最基本的三类方程:时间分数阶扩散方程、空间分数阶扩散方程、以及时空分数阶扩散方程的理论进展和数值方法研究在最近十年取得的结果.我们还有针对性地选择一些算例,用以说明几个重要方法的精度和有效性.  相似文献   

9.
分数阶Cahn-Hilliard方程的高效数值算法   总被引:2,自引:2,他引:0       下载免费PDF全文
给出了时空分数阶Cahn-Hilliard方程的一个高效数值算法.首先,利用Laplace变换将时空分数阶Cahn-Hilliard方程转化为空间分数阶Cahn-Hilliard方程;然后,结合Fourier谱方法和有限差分法得到一个时间二阶、空间谱精度的高效数值格式;最后,通过数值实验验证本文数值算法的有效性,并验证其满足能量耗散性质和质量守恒定律.  相似文献   

10.
本文研究了带有初始奇异性的多项时间分数阶扩散方程的一种全离散数值方法.首先,基于L1公式在渐变网格下离散多项Caputo时间分数阶导数,构造了多项时间分数阶扩散方程的时间半离散格式,证明了时间格式通过选取合适的网格参数r,时间方向的误差可以达到最优的收敛阶2-α_1,其中α_1(0 α_11)为多项时间分数阶导数阶数的最大值.然后,空间采用谱方法进行离散,得到了全离散格式,证明了全离散格式的无条件稳定性和收敛性.为了降低计算量和储存量,对多项时间分数阶扩散方程又构造了时间方向的快速算法,同时证明了该格式的收敛性.数值算例验证了算法的有效性,显示了快速算法的高效性.  相似文献   

11.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, a new numerical approach has been proposed for solving a class of delay time-fractional partial differential equations. The approximate solutions of these equations are considered as linear combinations of Müntz–Legendre polynomials with unknown coefficients. Operational matrix of fractional differentiation is provided to accelerate computations of the proposed method. Using Padé approximation and two-sided Laplace transformations, the mentioned delay fractional partial differential equations will be transformed to a sequence of fractional partial differential equations without delay. The localization process is based on the space-time collocation in some appropriate points to reduce the fractional partial differential equations into the associated system of algebraic equations which can be solved by some robust iterative solvers. Some numerical examples are also given to confirm the accuracy of the presented numerical scheme. Our results approved decisive preference of the Müntz–Legendre polynomials with respect to the Legendre polynomials.  相似文献   

13.
This research study deals with the numerical solutions of linear and nonlinear time-fractional subdiffusion equations of distributed order. The main aim of our approach is based on the hybrid of block-pulse functions and shifted Legendre polynomials. We produce a novel and exact operational vector for the fractional Riemann–Liouville integral and use it via the Gauss–Legendre quadrature formula and collocation method. Consequently, we reduce the proposed equations to systems of equations. The convergence and error bounds for the new method are investigated. Six problems are tested to confirm the accuracy of the proposed approach. Comparisons between the obtained numerical results and other existing methods are provided. Numerical experiments illustrate the reliability, applicability, and efficiency of the proposed method.  相似文献   

14.
In this paper, we study the numerical solution to time‐fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time‐fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a shifted Jacobi–Gauss collocation spectral algorithm is developed for solving numerically systems of high‐order linear retarded and advanced differential–difference equations with variable coefficients subject to mixed initial conditions. The spatial collocation approximation is based upon the use of shifted Jacobi–Gauss interpolation nodes as collocation nodes. The system of differential–difference equations is reduced to a system of algebraic equations in the unknown expansion coefficients of the sought‐for spectral approximations. The convergence is discussed graphically. The proposed method has an exponential convergence rate. The validity and effectiveness of the method are demonstrated by solving several numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, a novel numerical method is proposed for nonlinear partial differential equations with space- and time-fractional derivatives. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor's formula. The fractional derivatives are considered in the Caputo sense. Several illustrative examples are given to demonstrate the effectiveness of the present method. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is very effective and convenient for solving nonlinear partial differential equations of fractional order.  相似文献   

17.
This paper deals with the numerical solution of classes of fractional convection–diffusion equations with variable coefficients. The fractional derivatives are described based on the Caputo sense. Our approach is based on the collocation techniques. The method consists of reducing the problem to the solution of linear algebraic equations by expanding the required approximate solution as the elements of shifted Legendre polynomials in time and the Sinc functions in space with unknown coefficients. The properties of Sinc functions and shifted Legendre polynomials are then utilized to evaluate the unknown coefficients. Several examples are given and the numerical results are shown to demonstrate the efficiency of the newly proposed method.  相似文献   

18.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

19.
The aim of this paper is to present a new numerical method for solving a wide class of fractional partial differential equations (FPDEs) such as wave-diffusion equations, modified anomalous fractional sub-diffusion equations, time-fractional telegraph equations. The proposed method is based on the Fourier series expansion along the spatial coordinate which transforms the original equation into a sequence of multi-term fractional ordinary differential equations (ODEs). These fractional equations are solved by the use of a new efficient numerical technique – the backward substitution method. The numerical examples confirm the high accuracy and efficiency of the proposed numerical scheme in solving FPDEs with variable in time coefficients.  相似文献   

20.
利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析。首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet边界条件,并利用无单元Galerkin法离散整数阶微分方程;最后推导该方程无单元Galerkin法的误差估计公式。数值算例证明了该方法的精度和效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号