首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Let ϕ be a function in the Wiener amalgam space W(L1)\emph{W}_{\infty}(L_1) with a non-vanishing property in a neighborhood of the origin for its Fourier transform [^(f)]\widehat{\phi}, t={tn}n ? \mathbb Z{\bf \tau}=\{\tau_n\}_{n\in {{\mathbb Z}}} be a sampling set on ℝ and VftV_\phi^{\bf \tau} be a closed subspace of L2(\mathbbR)L_2(\hbox{\ensuremath{\mathbb{R}}}) containing all linear combinations of τ-translates of ϕ. In this paper we prove that every function f ? Vftf\in V_\phi^{\bf \tau} is uniquely determined by and stably reconstructed from the sample set Lft(f)={ò\mathbbR f(t)[`(f(t-tn))] dt}n ? \mathbb ZL_\phi^{\bf \tau}(f)=\Big\{\int_{\hbox{\ensuremath{\mathbb{R}}}} f(t) \overline{\phi(t-\tau_n)} dt\Big\}_{n\in {{\mathbb Z}}}. As our reconstruction formula involves evaluating the inverse of an infinite matrix we consider a partial reconstruction formula suitable for numerical implementation. Under an additional assumption on the decay rate of ϕ we provide an estimate to the corresponding error.  相似文献   

2.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

3.
We prove the existence of a global heat flow u : Ω ×  \mathbbR+ ? \mathbbRN {\mathbb{R}^{+}} \to {\mathbb{R}^{N}}, N > 1, satisfying a Signorini type boundary condition u(∂Ω ×  \mathbbR+ {\mathbb{R}^{+}}) ⊂  \mathbbRn {\mathbb{R}^{n}}), n \geqslant 2 n \geqslant 2 , and \mathbbRN {\mathbb{R}^{N}}) with boundary [`(W)] \bar{\Omega } such that φ(∂Ω) ⊂ \mathbbRN {\mathbb{R}^{N}} is given by a smooth noncompact hypersurface S. Bibliography: 30 titles.  相似文献   

4.
Let (tj)j ? \mathbbN{\left(\tau_j\right)_{j\in\mathbb{N}}} be a sequence of strictly positive real numbers, and let A be the generator of a bounded analytic semigroup in a Banach space X. Put An=?j=1n(I+\frac12 tjA) (I-\frac12 tjA)-1{A_n=\prod_{j=1}^n\left(I+\frac{1}{2} \tau_jA\right) \left(I-\frac{1}{2} \tau_jA\right)^{-1}}, and let x ? X{x\in X}. Define the sequence (xn)n ? \mathbbN ì X{\left(x_n\right)_{n\in\mathbb{N}}\subset X} by the Crank–Nicolson scheme: x n  = A n x. In this paper, it is proved that the Crank–Nicolson scheme is stable in the sense that supn ? \mathbbN||Anx|| < ¥{\sup_{n\in\mathbb{N}}\left\Vert A_nx\right\Vert<\infty}. Some convergence results are also given.  相似文献   

5.
Let α be a complex number of modulus strictly greater than 1, and let ξ ≠ 0 and ν be two complex numbers. We investigate the distribution of the sequence ξ α n  + ν, n = 0, 1, 2, . . . , modulo ${\mathbb{Z}[i],}Let α be a complex number of modulus strictly greater than 1, and let ξ ≠ 0 and ν be two complex numbers. We investigate the distribution of the sequence ξ α n  + ν, n = 0, 1, 2, . . . , modulo \mathbbZ[i],{\mathbb{Z}[i],} where i=?{-1}{i=\sqrt{-1}} and \mathbbZ[i]=\mathbbZ+i\mathbbZ{\mathbb{Z}[i]=\mathbb{Z}+i\mathbb{Z}} is the ring of Gaussian integers. For any z ? \mathbbC,{z\in \mathbb{C},} one may naturally call the quantity z modulo \mathbbZ[i]{\mathbb{Z}[i]} the fractional part of z and write {z} for this, in general, complex number lying in the unit square S:={z ? \mathbbC:0 £ \mathfrakR(z),\mathfrakJ(z) < 1 }{S:=\{z\in\mathbb{C}:0\leq \mathfrak{R}(z),\mathfrak{J}(z) <1 \}}. We first show that if α is a complex non-real number which is algebraic over \mathbbQ{\mathbb{Q}} and satisfies |α| > 1 then there are two limit points of the sequence {ξ α n  +ν}, n = 0, 1, 2, . . . , which are ‘far’ from each other (in terms of α only), except when α is an algebraic integer whose conjugates over \mathbbQ(i){\mathbb{Q}(i)} all lie in the unit disc |z| ≤  1 and x ? \mathbbQ(a,i).{\xi\in\mathbb{Q}(\alpha,i).} Then we prove a result in the opposite direction which implies that, for any fixed a ? \mathbbC{\alpha\in\mathbb{C}} of modulus greater than 1 and any sequence zn ? \mathbbC,n=0,1,2,...,{z_n\in\mathbb{C},n=0,1,2,\dots,} there exists x ? \mathbbC{\xi \in \mathbb{C}} such that the numbers ξ α n z n , n = 0, 1, 2, . . . , all lie ‘far’ from the lattice \mathbbZ[i]{\mathbb{Z}[i]}. In particular, they all can be covered by a union of small discs with centers at (1+i)/2+\mathbbZ[i]{(1+i)/2+\mathbb{Z}[i]} if |α| is large.  相似文献   

6.
Fourier series are considered on the one-dimensional torus for the space of periodic distributions that are the distributional derivative of a continuous function. This space of distributions is denoted Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}) and is a Banach space under the Alexiewicz norm, ||f||\mathbbT=sup|I| £ 2pI f|\|f\|_{\mathbb{T}}=\sup_{|I|\leq2\pi}|\int_{I} f|, the supremum being taken over intervals of length not exceeding 2π. It contains the periodic functions integrable in the sense of Lebesgue and Henstock–Kurzweil. Many of the properties of L 1 Fourier series continue to hold for this larger space, with the L 1 norm replaced by the Alexiewicz norm. The Riemann–Lebesgue lemma takes the form [^(f)](n)=o(n)\hat{f}(n)=o(n) as |n|→∞. The convolution is defined for f ? Ac(\mathbbT)f\in{\mathcal{A}}_{c}(\mathbb{T}) and g a periodic function of bounded variation. The convolution commutes with translations and is commutative and associative. There is the estimate ||f*g|| £ ||f||\mathbbT ||g||BV\|f\ast g\|_{\infty}\leq\|f\|_{\mathbb{T}} \|g\|_{\mathcal{BV}}. For g ? L1(\mathbbT)g\in L^{1}(\mathbb{T}), ||f*g||\mathbbT £ ||f||\mathbb T ||g||1\|f\ast g\|_{\mathbb{T}}\leq\|f\|_{\mathbb {T}} \|g\|_{1}. As well, [^(f*g)](n)=[^(f)](n) [^(g)](n)\widehat{f\ast g}(n)=\hat{f}(n) \hat{g}(n). There are versions of the Salem–Zygmund–Rudin–Cohen factorization theorem, Fejér’s lemma and the Parseval equality. The trigonometric polynomials are dense in Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}). The convolution of f with a sequence of summability kernels converges to f in the Alexiewicz norm. Let D n be the Dirichlet kernel and let f ? L1(\mathbbT)f\in L^{1}(\mathbb{T}). Then ||Dn*f-f||\mathbbT?0\|D_{n}\ast f-f\|_{\mathbb{T}}\to0 as n→∞. Fourier coefficients of functions of bounded variation are characterized. The Appendix contains a type of Fubini theorem.  相似文献   

7.
In this paper we study the asymptotic behaviour as t → ∞ of solutions to a nonlocal diffusion problem on a lattice, namely, with t ≥ 0 and . We assume that J is nonnegative and verifies . We find that solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool, the discrete Fourier transform.   相似文献   

8.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

9.
We study the limiting behavior of the K?hler–Ricci flow on \mathbbP(O\mathbbPn ?O\mathbbPn(-1)?(m+1)){{\mathbb{P}(\mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus(m+1)})}} for m, n ≥ 1, assuming the initial metric satisfies the Calabi symmetry. We show that the flow either shrinks to a point, collapses to \mathbbPn{{\mathbb{P}^n}} or contracts a subvariety of codimension m + 1 in the Gromov–Hausdorff sense. We also show that the K?hler–Ricci flow resolves a certain type of cone singularities in the Gromov–Hausdorff sense.  相似文献   

10.
Let ${s,\,\tau\in\mathbb{R}}Let s, t ? \mathbbR{s,\,\tau\in\mathbb{R}} and q ? (0,¥]{q\in(0,\infty]} . We introduce Besov-type spaces [(B)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} for p ? (0, ¥]{p\in(0,\,\infty]} and Triebel–Lizorkin-type spaces [(F)\dot]s, tpq(\mathbbRn) for p ? (0, ¥){{{{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}\,{\rm for}\, p\in(0,\,\infty)} , which unify and generalize the Besov spaces, Triebel–Lizorkin spaces and Q spaces. We then establish the j{\varphi} -transform characterization of these new spaces in the sense of Frazier and Jawerth. Using the j{\varphi} -transform characterization of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\, {\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} , we obtain their embedding and lifting properties; moreover, for appropriate τ, we also establish the smooth atomic and molecular decomposition characterizations of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\,{\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} . For s ? \mathbbR{s\in\mathbb{R}} , p ? (1, ¥), q ? [1, ¥){p\in(1,\,\infty), q\in[1,\,\infty)} and t ? [0, \frac1(max{pq})¢]{\tau\in[0,\,\frac{1}{(\max\{p,\,q\})'}]} , via the Hausdorff capacity, we introduce certain Hardy–Hausdorff spaces B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} and prove that the dual space of B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} is just [(B)\dot]-s, tp¢, q(\mathbbRn){\dot{B}^{-s,\,\tau}_{p',\,q'}(\mathbb{R}^{n})} , where t′ denotes the conjugate index of t ? (1,¥){t\in (1,\infty)} .  相似文献   

11.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

12.
Consider a family of smooth immersions F(·,t) : Mn? \mathbbRn+1{F(\cdot,t)\,:\,{M^n\to \mathbb{R}^{n+1}}} of closed hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} moving by the mean curvature flow \frac?F(p,t)?t = -H(p,t)·n(p,t){\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)}, for t ? [0,T){t\in [0,T)}. We show that at the first singular time of the mean curvature flow, certain subcritical quantities concerning the second fundamental form, for example ò0tòMs\frac|A|n + 2 log (2 + |A|) dmds,{\int_{0}^{t}\int_{M_{s}}\frac{{\vert{\it A}\vert}^{n + 2}}{ log (2 + {\vert{\it A}\vert})}} d\mu ds, blow up. Our result is a log improvement of recent results of Le-Sesum, Xu-Ye-Zhao where the scaling invariant quantities were considered.  相似文献   

13.
Let j{\varphi} be an analytic self-map of the unit disk \mathbbD{\mathbb{D}}, H(\mathbbD){H(\mathbb{D})} the space of analytic functions on \mathbbD{\mathbb{D}} and g ? H(\mathbbD){g \in H(\mathbb{D})}. The boundedness and compactness of the operator DCj : H ? Z{DC_\varphi : H^\infty \rightarrow { \mathcal Z}} are investigated in this paper.  相似文献   

14.
Let ${\Gamma < {\rm SL}(2, {\mathbb Z})}Let G < SL(2, \mathbb Z){\Gamma < {\rm SL}(2, {\mathbb Z})} be a free, finitely generated Fuchsian group of the second kind with no parabolics, and fix two primitive vectors v0, w0 ? \mathbb Z2  \  {0}{v_{0}, w_{0} \in \mathbb {Z}^{2} \, {\backslash} \, \{0\}}. We consider the set S{\mathcal {S}} of all integers occurring in áv0g, w0?{\langle v_{0}\gamma, w_{0}\rangle}, for g ? G{\gamma \in \Gamma} and the usual inner product on \mathbb R2{\mathbb {R}^2}. Assume that the critical exponent δ of Γ exceeds 0.99995, so that Γ is thin but not too thin. Using a variant of the circle method, new bilinear forms estimates and Gamburd’s 5/6-th spectral gap in infinite-volume, we show that S{\mathcal {S}} contains almost all of its admissible primes, that is, those not excluded by local (congruence) obstructions. Moreover, we show that the exceptional set \mathfrak E(N){\mathfrak {E}(N)} of integers |n| < N which are locally admissible (n ? S   (mod  q)   for all   q 3 1){(n \in \mathcal {S} \, \, ({\rm mod} \, q) \, \, {\rm for\,all} \,\, q \geq 1)} but fail to be globally represented, n ? S{n \notin \mathcal {S}}, has a power savings, |\mathfrak E(N)| << N1-e0{|\mathfrak {E}(N)| \ll N^{1-\varepsilon_{0}}} for some ${\varepsilon_{0} > 0}${\varepsilon_{0} > 0}, as N → ∞.  相似文献   

15.
Let x1, ?, xn \xi_1, \ldots, \xi_n be random variables and U be a subset of the Cartesian product \mathbbZ+n, \mathbbZ+ \mathbb{Z}_+^n, \mathbb{Z}_+ being the set of all non-negative integers. The random variables are said to be strictly U-uncorrelated if¶¶E(x1j1 ?xnjn) = E(x1j1) ?E(xnjn) ? (j1, ... ,jn) ? U. \textbf {E}\big(\xi_1^{j_1} \cdots \xi_n^{j_n}\big) = \textbf {E}\big(\xi_1^{j_1}\big) \cdots \textbf {E}\big(\xi_n^{j_n}\big) \iff (j_1, \dots ,j_n) \in U. ¶It is proved that for an arbitrary subset U \subseteqq \mathbbZ+n U \subseteqq \mathbb{Z}_+^n containing all points with 0 or 1 non-zero coordinates there exists a collection of n strictly U-uncorrelated random variables.  相似文献   

16.
Let Ω i and Ω o be two bounded open subsets of \mathbbRn{{\mathbb{R}}^{n}} containing 0. Let G i be a (nonlinear) map from ?Wi×\mathbbRn{\partial\Omega^{i}\times {\mathbb{R}}^{n}} to \mathbbRn{{\mathbb{R}}^{n}} . Let a o be a map from ∂Ω o to the set Mn(\mathbbR){M_{n}({\mathbb{R}})} of n × n matrices with real entries. Let g be a function from ∂Ω o to \mathbbRn{{\mathbb{R}}^{n}} . Let γ be a positive valued function defined on a right neighborhood of 0 in the real line. Let T be a map from ]1-(2/n),+¥[×Mn(\mathbbR){]1-(2/n),+\infty[\times M_{n}({\mathbb{R}})} to Mn(\mathbbR){M_{n}({\mathbb{R}})} . Then we consider the problem
$\left\{ {ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \right.$\left\{ \begin{array}{ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \end{array} \right.  相似文献   

17.
We find some optimal estimates for the first eigenfunction of a class of elliptic equations whose prototype is - ( guxi )xi = lgu \textin W ì \mathbbRn - {\left( {\gamma u_{{x_{i} }} } \right)}_{{x_{i} }} = \lambda \gamma u\,{\text{in}}\,\Omega \subset \mathbb{R}^{n} with Dirichlet boundary condition, where γ is the normalized Gaussian function in \mathbbRn \mathbb{R}^{n} . To this aim we make use of the Gaussian symmetrization which transforms a domain into an half-space with the same Gaussian measure. The main tools we use are the properties of the weighted rearrangements and in particular the isoperimetric inequality with respect to Gaussian measure.  相似文献   

18.
We prove variants of Korn’s inequality involving the deviatoric part of the symmetric gradient of fields u:\mathbbR2 é W? \mathbbR2 u:{\mathbb{R}^2} \supset \Omega \to {\mathbb{R}^2} belonging to Orlicz–Sobolev classes. These inequalities are derived with the help of gradient estimates for the Poisson equation in Orlicz spaces. We apply these Korn type inequalities to variational integrals of the form
òW h( | eD(u) | )dx \int\limits_\Omega {h\left( {\left| {{\varepsilon^D}(u)} \right|} \right)dx}  相似文献   

19.
Given an isotropic random vector X with log-concave density in Euclidean space \mathbbRn{\mathbb{R}^n} , we study the concentration properties of |X| on all scales, both above and below its expectation. We show in particular that
l \mathbbP( | |X| - ?n | 3 t?n ) £ C  exp ( -cn1/2 min(t3, t) )   "t 3 0, \begin{array}{l} \mathbb{P}\left ( \left | |X| - \sqrt{n} \right | \geq t\sqrt{n} \right ) \leq C \, {\rm exp} \left ( -cn^{1/2} {\rm min}(t^{3}, t) \right) \; \forall t \geq 0, \end{array}  相似文献   

20.
We consider local minimizers u:\mathbbR2 é W? \mathbbRM u:{\mathbb{R}^2} \supset \Omega \to {\mathbb{R}^M} of the variational integral
òW H( ?u )dx \int\limits_\Omega {H\left( {\nabla u} \right)dx}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号