首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have developed fully fourth order accurate compact finite difference discretization scheme for the Navier-Stokes equations coupled with Maxwell''s equations. The implementation is done in cylindrical polar geometry. Due to the full-MHD modeling of physical flow, the modeled equations are fully nonlinear coupled hydrodynamic equations which are again coupled with Maxwells equations. In our computations, we have accounted for the induced magnetic field in the flow of an electrically conducting fluid in an external magnetic field. The code is tested against available experimental and theoretical data where applicable. It is observed that a smaller grid of $64 \times 64$ is sufficient for weakly nonlinear problems and higher grids up to $512 \times 512$ are needed as the degree of nonlinearities grow in the modeled equation. In the absence of magnetic field, a discontinuity of total drag coefficient and separation length is noted for $Re=73$ which is in agreement with literature. When the magnetic Reynolds number $Rm<1$ separation length decreases linearly with strength of magnetic field on a log-log scale whereas if $Rm>1$, it decreases nonlinearly, at a much faster rate. Thermal boundary layer thickness decreases as the strength of magnetic field increases and it forces the thermal convection to take place in a laminar structure as observed from thermal contour lines. Finally, using divided differences, we establish that the accuracy of the proposed numerical scheme is in fact fourth order.  相似文献   

2.
The equations of a polar fluid of hydromagnetic fluctuating through a porous medium are cast into matrix form using the state space and Laplace transform techniques the resulting formlation is applied to a variety of problems. The solution to a problem of an electrically conducting polar fluid in the presence of a transverse magnetic field and to a probem for the flow between two parallel fixed plates is obtained. The inversion of the Laplace transforms, is carried out using a numerical approach. Numerical results for the velocity, angular velocity distribution and the induced magnetic field are given and illustrated graphically for each problems.  相似文献   

3.
We consider a quasi-three-dimensional problem of remote marine sounding by a high-power stationary source located on land. A transition from the three-dimensional problem to a family of parametric two-dimensional problems is performed. The solution of the remote marine sounding problem is obtained with high accuracy after solving about 20 two-dimensional problems. The integral equations are solved by the modified integral current method, which has proved highly efficient for field computations inside a strongly conducting anomaly. The electric field amplitude is observed to increase with depth. The width of the coastal current channel is estimated by analyzing the vertical magnetic field component.  相似文献   

4.
In this paper we examine the influence of magnetic fields on the static response of magnetoelastic materials, such as magneto-sensitive elastomers, that are capable of large deformations. The analysis is based on a simple formulation of the mechanical equilibrium equations and constitutive law for such materials developed recently by the authors, coupled with the governing magnetic field equations. The equations are applied in the solution of some simple representative and illustrative problems, with the focus on incompressible materials. First, we consider the pure homogeneous deformation of a slab of material in the presence of a magnetic field normal to its faces. This is followed by a review of the problem of simple shear of the slab in the presence of the same magnetic field. Next we examine a problem involving non-homogeneous deformations, namely the extension and inflation of a circular cylindrical tube. In this problem the magnetic field is taken to be either axial (a uniform field) or circumferential. For each problem we give a general formulation for the case of an isotropic magnetoelastic constitutive law, and then, for illustration, specific results are derived for a prototype constitutive law. We emphasize that in general there are significant differences in the results for formulations in which the magnetic field or the magnetic induction is taken as the independent magnetic variable. This is demonstrated for one particular problem, in which restrictions are placed on the admissible class of constitutive laws if the magnetic induction is the independent variable but no restrictions if the magnetic field is the independent variable.Received: May 17, 2004  相似文献   

5.
In this paper we examine the influence of magnetic fields on the static response of magnetoelastic materials, such as magneto-sensitive elastomers, that are capable of large deformations. The analysis is based on a simple formulation of the mechanical equilibrium equations and constitutive law for such materials developed recently by the authors, coupled with the governing magnetic field equations. The equations are applied in the solution of some simple representative and illustrative problems, with the focus on incompressible materials. First, we consider the pure homogeneous deformation of a slab of material in the presence of a magnetic field normal to its faces. This is followed by a review of the problem of simple shear of the slab in the presence of the same magnetic field. Next we examine a problem involving non-homogeneous deformations, namely the extension and inflation of a circular cylindrical tube. In this problem the magnetic field is taken to be either axial (a uniform field) or circumferential. For each problem we give a general formulation for the case of an isotropic magnetoelastic constitutive law, and then, for illustration, specific results are derived for a prototype constitutive law. We emphasize that in general there are significant differences in the results for formulations in which the magnetic field or the magnetic induction is taken as the independent magnetic variable. This is demonstrated for one particular problem, in which restrictions are placed on the admissible class of constitutive laws if the magnetic induction is the independent variable but no restrictions if the magnetic field is the independent variable.  相似文献   

6.
A mathematical analysis has been carried out to study magnetohydrodynamic boundary layer flow, heat and mass transfer characteristic on steady two-dimensional flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with uniform magnetic field. Momentum boundary layer equation takes into account of transverse magnetic field whereas energy equation takes into account of Ohmic dissipation due to transverse magnetic field, thermal radiation and non-uniform source effects. An analysis has been performed for heating process namely the prescribed wall heat flux (PHF case). The governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method and solved very efficiently by finite-difference method. Favorable comparisons with previously published work on various special cases of the problem are obtained. The effects of various physical parameters on velocity, temperature, concentration distributions are presented graphically and in tabular form.  相似文献   

7.
In this paper, we discuss similarity reductions for problems of magnetic field effects on free convection flow of a nanofluid past a semi-infinite vertical flat plate. The application of a one-parameter group reduces the number of independent variables by 1, and consequently the governing partial differential equation with the auxiliary conditions to an ordinary differential equation with the appropriate corresponding conditions. The differential equations obtained are solved numerically and the effects of the parameters governing the problem are discussed. Different kinds of nanoparticles were tested.  相似文献   

8.
We consider initial-boundary value problems for the equations of isotropic elasticity for several mixed boundary conditions in infinite wave guides, as well as Maxwell equations. With the help of decompositions of the displacement field into divergence- and curl-free parts, respectively, which are compatible with the boundary conditions, we obtain sharp decay rates for the solutions. The decomposed systems correspond to the second-order Maxwell equations for the electric and the magnetic field with electric and magnetic boundary conditions, respectively.  相似文献   

9.
We analyze the simplest free boundary problem of magnetohydrodynamics governing the evolution of an isolated mass of a viscous incompressible liquid in the presence of the magnetic field. The motion of the liquid is governed by the Navier–Stokes equations, and for the magnetic field we have the Maxwell equations with an excluded displacement current. The magnetic field should be determined not only in the domain filled with the liquid, but also in the surrounding vacuum region. On the free boundary of the liquid standard jump conditions for the magnetic field are prescribed, as well as kinematic and dynamic boundary conditions, where the magnetic stress tensor is taken into account. We prove that the solution corresponding to a rigid rotation of the fluid and to zero magnetic field is stable if the functional of potential energy has a positive second variation. Bibliography: 11 titles.  相似文献   

10.
In the majority of research on incompressible magnetohydrodynamic (MHD) flows, the simplified model with the low magnetic Reynolds number assumption has been adopted because it reduces the number of equations to be solved. However, because the effect of flow on magnetic field is also neglected, the solutions of the simplified model may be different from those of the full model. As an example, the flow of an electrically conducting fluid past a circular cylinder under a magnetic field is investigated numerically using the simplified and full models in this paper. To solve the problems, two second-order compact finite difference algorithms based on the streamfunction-velocity formulation of the simplified model and the quasi-streamfunction-velocity formulation of the full model are developed respectively.Numerical simulations are carried out over a wide range of Hartmann number for steady-state laminar problems with both models. For the full model, magnetic Reynolds number (Rem) is chosen from 0.01 to 10. The computed results show that solutions of the simplified MHD model are not exactly the same as those of the full MHD model for this flow problem in most cases even if Rem in the full model is very low. Only in the special case that a strong external magnetic field is exerted perpendicular to the dominant flow direction, can the simplified MHD model be regarded as an approximation of the full MHD model with low Rem.  相似文献   

11.
The generalized thermoelastic theory with thermal relaxation, in the context of Lord and Shulman theory, is used to investigate the magneto-thermoelastic problem of a thin slim strip placed in a magnetic field and subjected to a moving plane of heat source. The generalized magneto-thermoelastic coupled governing equations are formulated. By means of the Laplace transform and numerical Laplace inversion, the governing equations are solved. Numerical calculations for the considered variables are performed and the obtained results are presented graphically. The effects of moving heat source speed and applied magnetic field on temperature, stress and displacement are studied. It is found from the graphs that the temperature, thermally induced displacement and stress in the strip are found to decrease at large heat source speed, and the magnetic field significantly influences the variations of non-dimensional displacement and stress. However, it has no effect on the non-dimensional temperature.  相似文献   

12.
The steady laminar magnetohydrodynamic (MHD) boundary-layer flow past a wedge with constant surface heat flux immersed in an incompressible micropolar fluid in the presence of a variable magnetic field is investigated in this paper. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by means of an implicit finite-difference scheme known as the Keller-box method. Numerical results show that micropolar fluids display drag reduction and consequently reduce the heat transfer rate at the surface, compared to the Newtonian fluids. The opposite trends are observed for the effects of the magnetic field on the fluid flow and heat transfer characteristics.  相似文献   

13.
We consider the partial differential equations proposed by Shliomis to model the dynamics of an incompressible viscous ferrofluid submitted to an external magnetic field. The Shliomis system consists of the incompressible Navier‐Stokes equations, the magnetization equations, and the magnetostatic equations. The magnetization equations is of Bloch type, and no regularizing term is added. We prove the global existence of unique strong solution to the initial boundary value problem for the system in a bounded domain, with the small initial data and external magnetic field but without any restrictions on the physical parameters. The novelty of the analysis is to introduce a linear combination of magnetic fields.  相似文献   

14.
We consider the first mixed problem for the Vlasov–Poisson equations with an external magnetic field in a half-space. This problem describes the evolution of the density distributions of ions and electrons in a high temperature plasma with a fixed potential of electric field on a boundary. For arbitrary potential of electric field and sufficiently large induction of external magnetic field, it is shown that the characteristics of the Vlasov equations do not reach the boundary of the halfspace. It is proved the existence and uniqueness of classical solution with the supports of charged-particle density distributions at some distance from the boundary, if initial density distributions are sufficiently small.  相似文献   

15.
在横向磁场作用下,不可压缩的粘性导电流体,流经一个半无限的竖板,完成了壁面温度变化对磁流体动力学流动的分析.假定由粘性耗散和感应磁场产生的热量可以忽略不计.无量纲的控制方程为二维非稳态耦合的非线性方程.结果显示,磁场参数对空气和水的速度有着抑制作用.  相似文献   

16.
In this paper we are concerned with a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. The magnetic field that permeates the plate consists of a non-stationary part and a uniform (constant) part. When the uniform magnetic field is aligned with the mid-plane of the plate, a strongly interactive system emerges with direct coupling between the elastic field and the magnetic field occurring in all the equations of the system. The unique solvability of the model is established within the framework of semigroup theory. Spectral analysis methods are used to show strong asymptotic stability and determine the polynomial decay rate of weak solutions.  相似文献   

17.
This article considers the oscillatory flows of a generalized Burgers’ fluid on an infinite insulating plate when the fluid is permeated by a transverse magnetic field. The effects of Hall current are taken into account. Modified Darcy’s law for a generalized Burgers’ fluid has been used to discuss the flows in a porous medium. The governing time dependent equations in a rotating frame are first developed and then solved for the two problems. The influence of various emerging parameters is discussed through various graphs. The solutions for the Newtonian, second grade, Maxwell, Oldroyd-B and Burgers’ fluids can be obtained from our solutions as the limiting cases.  相似文献   

18.
In this paper, the coupled equations in velocity and magnetic field for unsteady magnetohydrodynamic (MHD) flow through a pipe of rectangular section are solved using combined finite volume method and spectral element technique, improved by means of Hermit interpolation. The transverse applied magnetic field may have an arbitrary orientation relative to the section of the pipe. The velocity and induced magnetic field are studied for various values of Hartmann number, wall conductivity and orientation of the applied magnetic field. Comparisons with the exact solution and also some other numerical methods are made in the special cases where the exact solution exists. The numerical results for these sample problems compare very well to analytical results.  相似文献   

19.
The rotating flow in the presence of a magnetic field is a problem belonging to hydromagnetics and deserves to be more widely studied than it has been to date. In the non‐linear regime the literature is scarce. We develop the governing equations for the unsteady hydromagnetic rotating flow of a fourth‐order fluid past a porous plate. The steady flow is governed by a boundary value problem in which the order of differential equations is more than the number of available boundary conditions. It is shown that by augmenting the boundary conditions based on asymptotic structures at infinity it is possible to obtain numerical solutions of the nonlinear hydromagnetic equations. Effects of uniform suction or blowing past the porous plate, exerted magnetic field and rotation on the flow phenomena, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviours of the Newtonian fluid and second‐, third‐ and fourth‐order non‐Newtonian fluids are compared for the special flow problem, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
将电磁场理论与弹性力学理论相结合,建立了描述铁磁材料在正弦电磁场中的数学模型,并对该模型一类的4阶非线性偏微分方程的解进行了讨论.给出其一阶近似后得到的线性偏微分方程的解析表达式和数值计算方法.计算结果表明,本方法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号