首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We study a static stochastic single machine scheduling problem in which jobs have random processing times with arbitrary distributions, due dates are known with certainty, and fixed individual penalties (or weights) are imposed on both early and tardy jobs. The objective is to find an optimal sequence that minimizes the expected total weighted number of early and tardy jobs. The general problem is NP-hard to solve; however, in this paper, we develop certain conditions under which the problem is solvable exactly. An efficient heuristic is also introduced to find a candidate for the optimal sequence of the general problem. Our illustrative examples and computational results demonstrate that the heuristic performs well in identifying either optimal sequences or good candidates with low errors. Furthermore, we show that special cases of the problem studied here reduce to some classical stochastic single machine scheduling problems including the problem of minimizing the expected weighted number of early jobs and the problem of minimizing the expected weighted number of tardy jobs which are both solvable by the proposed exact or heuristic methods.  相似文献   

2.
We consider the following model: we inspect the motion of a Markov process with which an “evolution cost” is associated. We inspect the process at times T 1…, T n ,…. If when we inspect, its value is in a given set A, it continues its evolution, otherwise we kill it. At each inspection we associate an "inspection cost" and a "killing cost". The problem consists of finding a sequence of optimal inspections. After the modelization we construct the value function by an iterative procedure as in impulse control theory, by using the theory of analytic functions and theorems of section. Thanks to the criteria of optimality we get a sequence of optimal inspections under very general hypotheses.  相似文献   

3.
This paper deals with a general class of piecewise deterministic control systems that encompasses FMS flow control models. One uses the Markov renewal decision process formalism to characterize optimal policies via a discrete event dynamic programming approach. A family of control problems with a random stopping time is associated with these optimality conditions. These problems can be reformulated as infinite horizon deterministic control problems. It is then shown how the so-calledturnpike property should hold for these deterministic control problems under classical convexity assumptions. These turnpikes have the same generic properties as the attractors obtained via a problem specific approach in FMS flow control models and production planning and are calledhedging points in this literature.This research has been supported by NSERC-Canada, Grants No. A4952 by FCAR-Québec, Grant No. 88EQ3528, Actions Structurantes, MESS-Québec, Grant No. 6.1/7.4(28), and FNRS-Switzerland.  相似文献   

4.
We consider scheduling a batch of jobs with stochastic processing times on parallel machines. We derive various new formulae for the expected flowtime and weighted flowtime under general scheduling rules. Smith's Rule, which orders job starts by decreasing ratio of weight to expected processing time provides a natural heuristic for this problem. We obtain a bound on the worst case difference between the expected weighted flow time under Smith's Rule and under an optimal policy. For a wide class of processing time distributions, this bound is of oderO(1) and does not increase with the number of jobs.This research was supported in part by NSF Grant ECS-8712798.  相似文献   

5.
Abstract

We consider the mean-variance hedging of a defaultable claim in a general stochastic volatility model. By introducing a new measure Q 0, we derive the martingale representation theorem with respect to the investors' filtration . We present an explicit form of the optimal-variance martingale measure by means of a stochastic Riccati equation (SRE). For a general contingent claim, we represent the optimal strategy and the optimal cost of the mean-variance hedging by means of another backward stochastic differential equation (BSDE). For the defaultable option, especially when there exists a random recovery rate we give an explicit form of the solution of the BSDE.  相似文献   

6.
In a previous paper we gave a new formulation and derived the Euler equations and other necessary conditions to solve strong, pathwise, stochastic variational problems with trajectories driven by Brownian motion. Thus, unlike current methods which minimize the control over deterministic functionals (the expected value), we find the control which gives the critical point solution of random functionals of a Brownian path and then, if we choose, find the expected value.This increase in information is balanced by the fact that our methods are anticipative while current methods are not. However, our methods are more directly connected to the theory and meaningful examples of deterministic variational theory and provide better means of solution for free and constrained problems. In addition, examples indicate that there are methods to obtain nonanticipative solutions from our equations although the anticipative optimal cost function has smaller expected value.In this paper we give new, efficient numerical methods to find the solution of these problems in the quadratic case. Of interest is that our numerical solution has a maximal, a priori, pointwise error of O(h3/2) where h is the node size. We believe our results are unique for any theory of stochastic control and that our methods of proof involve new and sophisticated ideas for strong solutions which extend previous deterministic results by the first author where the error was O(h2).We note that, although our solutions are given in terms of stochastic differential equations, we are not using the now standard numerical methods for stochastic differential equations. Instead we find an approximation to the critical point solution of the variational problem using relations derived from setting to zero the directional derivative of the cost functional in the direction of simple test functions.Our results are even more significant than they first appear because we can reformulate stochastic control problems or constrained calculus of variations problems in the unconstrained, stochastic calculus of variations formulation of this paper. This will allow us to find efficient and accurate numerical solutions for general constrained, stochastic optimization problems. This is not yet being done, even in the deterministic case, except by the first author.  相似文献   

7.
A problem of robust guaranteed cost control of stochastic discrete-time systems with parametric uncertainties under Markovian switching is considered. The control is simultaneously applied to both the random and the deterministic components of the system. The noise (the random) term depends on both the states and the control input. The jump Markovian switching is modeled by a discrete-time Markov chain and the noise or stochastic environmental disturbance is modeled by a sequence of identically independently normally distributed random variables. Using linear matrix inequalities (LMIs) approach, the robust quadratic stochastic stability is obtained. The proposed control law for this quadratic stochastic stabilization result depended on the mode of the system. This control law is developed such that the closed-loop system with a cost function has an upper bound under all admissible parameter uncertainties. The upper bound for the cost function is obtained as a minimization problem. Two numerical examples are given to demonstrate the potential of the proposed techniques and obtained results.  相似文献   

8.
In this paper we study the problem of simultaneous minimization of risks, and maximization of the terminal value of expected funds assets in a stochastic defined benefit aggregated pension plan. The risks considered are the solvency risk, measured as the variance of the terminal fund’s level, and the contribution risk, in the form of a running cost associated to deviations from the evolution of the stochastic normal cost. The problem is formulated as a bi-objective stochastic problem of mean–variance and it is solved with dynamic programming techniques. We find the efficient frontier and we show that the optimal portfolio depends linearly on the supplementary cost of the fund, plus an additional term due to the random evolution of benefits.  相似文献   

9.
In this paper we research the single machine stochastic JIT scheduling problem subject to the machine breakdowns for preemptive-resume and preemptive-repeat.The objective function of the problem is the sum of squared deviations of the job-expected completion times from the due date.For preemptive-resume,we show that the optimal sequence of the SSDE problem is V-shaped with respect to expected processing times.And a dynamic programming algorithm with the pseudopolynomial time complexity is given.We discuss the difference between the SSDE problem and the ESSD problem and show that the optimal solution of the SSDE problem is a good approximate optimal solution of the ESSD problem,and the optimal solution of the SSDE problem is an optimal solution of the ESSD problem under some conditions.For preemptive-repeat,the stochastic JIT scheduling problem has not been solved since the variances of the completion times cannot be computed.We replace the ESSD problem by the SSDE problem.We show that the optimal sequence of the SSDE problem is V-shaped with respect to the expected occupying times.And a dynamic programming algorithm with the pseudopolynomial time complexity is given.A new thought is advanced for the research of the preemptive-repeat stochastic JIT scheduling problem.  相似文献   

10.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

11.
We study a semi-discretisation scheme for stochastic optimal control problems whose dynamics are given by controlled stochastic delay (or functional) differential equations with bounded memory. Performance is measured in terms of expected costs. By discretising time in two steps, we construct a sequence of approximating finite-dimensional Markovian optimal control problems in discrete time. The corresponding value functions converge to the value function of the original problem, and we derive an upper bound on the discretisation error or, equivalently, a worst-case estimate for the rate of convergence.  相似文献   

12.
We recast the valuation of annuities and life insurance contracts under mortality and interest rates, both of which are stochastic, as a problem of solving a system of linear equations with random perturbations. A sequence of uniform approximations is developed which allows for fast and accurate computation of expected values. Our reformulation of the valuation problem provides a general framework which can be employed to find insurance premiums and annuity values covering a wide class of stochastic models for mortality and interest rate processes. The proposed approach provides a computationally efficient alternative to Monte Carlo based valuation in pricing mortality-linked contingent claims.  相似文献   

13.
In this paper we research the problem in which the objective is to minimize the sum of squared deviations of job expected completion times from the due date, and the job processing times are stochastic. In the problem the machine is subject to stochastic breakdowns and all jobs are preempt-repeat. In order to show that the replacing ESSD by SSDE is reasonable, we discuss difference between ESSD function and SSDE function. We first give an express of the expected completion times for both cases without resampling and with resampling. Then we show that the optimal sequence of the problem V-shaped with respect to expected occupying time. A dynamic programming algorithm based on the V-shape property of the optimal sequence is suggested. The time complexity of the algorithm is pseudopolynomial.  相似文献   

14.
This work presents a model of single–machine scheduling problem. The machine is failure–prone and subject to random breakdowns. The processing time is a deterministic sequence that is randomly compressible, which may be from the introduction of new technology or addition of new equipment. Taking into account the cost for the random breakdowns and the random compressible processing time, our objective is to find the optimal scheduling policy to minimize an objective function. Under simple conditions, it is shown that the optimal sequence possesses a V-shape property  相似文献   

15.
In this note open shops with two machines are considered. The processing time of job j, j = 1, …, n, on machine 1 (2) is a random variable Xj (Yj), which is exponentially distributed with rate γ (μ). If the completion time of job j is Cj, a waiting cost is incurred of g(Cj), where g is a function that is increasing concave. The preemptive policy that minimizes the total expected waiting cost E(Σg(Cj)) is determined. Two machine open shops with jobs that have random due dates are considered as well. For the case where the due dates D1,…,Dn are exchangeable, the preemptive policy that minimizes the expected number of tardy jobs is determined.  相似文献   

16.
This paper is concerned with the problems in scheduling a set of jobs associated with random due dates on a single machine so as to minimize the expected maximum lateness in stochastic environment. This is a difficult problem and few efforts have been reported on its solution in the literature. In this paper, we first derive a deterministic equivalent to the expected maximum lateness and then propose a dynamic programming algorithm to obtain the optimal solutions. The procedures to compute optimal solutions are initially developed in the case of deterministic processing times, and then extended to stochastic processing times following arbitrary probability distributions. Moreover, several heuristic rules are suggested to compute near-optimal solutions, which are shown to be highly efficient and accurate by computer-based experiments.  相似文献   

17.
Michael Schacher 《PAMM》2010,10(1):541-542
The aim of this presentation is to construct an optimal open-loop feedback controller for robots, which takes into account stochastic uncertainties. This way, optimal regulators being insensitive with respect to random parameter variations can be obtained. Usually, a precomputed feedback control is based on exactly known or estimated model parameters. However, in practice, often exact informations about model parameters, e.g. the payload mass, are not given. Supposing now that the probability distribution of the random parameter variation is known, in the following, stochastic optimisation methods will be applied in order to obtain robust open-loop feedback control. Taking into account stochastic parameter variations, the method works with expected cost functions evaluating the primary control expenses and the tracking error. The expectation of the total costs has then to be minimized. Corresponding to Model Predictive Control (MPC), here a sliding horizon is considered. This means that, instead of minimizing an integral from a starting time point t0 to the final time tf, the future time range [t; t+T], with a small enough positive time unit T, will be taken into account. The resulting optimal regulator problem under stochastic uncertainty will be solved by using the Hamiltonian of the problem. After the computation of a H-minimal control, the related stochastic two-point boundary value problem is then solved in order to find a robust optimal open-loop feedback control. The performance of the method will be demonstrated by a numerical example, which will be the control of robot under random variations of the payload mass. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The value of the stochastic solution in multistage problems   总被引:1,自引:0,他引:1  
We generalize the definition of the bounds for the optimal value of the objective function for various deterministic equivalent models in multistage stochastic programs. The parameters EVPI and VSS were introduced for two-stage models. The parameter EVPI, the expected value of perfect information, measures how much it is reasonable to pay to obtain perfect information about the future. The parameter VSS, the value of the stochastic solution, allows us to obtain the goodness of the expected solution value when the expected values are replaced by the random values for the input variables. We extend the definition of these parameters to the multistage stochastic model and prove a similar chain of inequalities with the lower and upper bounds depending substantially on the structure of the problem. This research has been partially supported by the grants, 1/BBVA 00038.16421/2004 from Fundación BBVA, SEJ2005-05549/ECON from Ministerio de Educación y Ciencia and the grant GRUPOS79/04 from the Generalitat Valenciana, Spain.  相似文献   

19.
An infinite horizon, expected average cost, dynamic routing problem is formulated for a simple failure-prone queueing system, modelled as a continuous time, continuous state controlled stochastic process. We prove that the optimal average cost is independent of the initial state and that the cost-to-go functions of dynamic programming are convex. These results, together with a set of optimality conditions, lead to the conclusion that optimal policies are switching policies, characterized by a set of switching curves (or regions), each curve corresponding to a particular state of the nodes (servers).  相似文献   

20.
We consider a problem of finding optimal contracts in continuous time, when the agent’s actions are unobservable by the principal, who pays the agent with a one-time payoff at the end of the contract. We fully solve the case of quadratic cost and separable utility, for general utility functions. The optimal contract is, in general, a nonlinear function of the final outcome only, while in the previously solved cases, for exponential and linear utility functions, the optimal contract is linear in the final output value. In a specific example we compute, the first-best principal’s utility is infinite, while it becomes finite with hidden action, which is increasing in value of the output. In the second part of the paper we formulate a general mathematical theory for the problem. We apply the stochastic maximum principle to give necessary conditions for optimal contracts. Sufficient conditions are hard to establish, but we suggest a way to check sufficiency using non-convex optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号