首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The paper concerns the well-posedness problem of an evolutionary weighted p-Laplacian with boundary degeneracy. Different from the classical theory for linear equations, it is shown that the degenerate portion of the boundary should be decomposed into two parts: the strongly degenerate boundary on which the equation exhibits hyperbolic characteristics and the weakly degenerate boundary on which the equation still exhibits parabolic characteristics. We formulate reasonably the boundary value condition and establish the existence and uniqueness theorems.  相似文献   

2.
A numerical approach to degenerate parabolic equations   总被引:2,自引:2,他引:0  
Summary. In this work we propose a numerical approach to solve some kind of degenerate parabolic equations. The underlying idea is based on the maximum principle. More precisely, we locally perturb the (initial and boundary) data instead of the nonlinear diffusion coefficients, so that the resulting problem is not degenerate. The efficiency of this method is shown analytically as well as numerically. The numerical experiments show that this new approach is comparable with the existing ones. Received January 20, 1999 / Revised version received February 28, 2000 / Published online July 25, 2001  相似文献   

3.
We investigate uniqueness for degenerate parabolic and elliptic equations in the class of solutions belonging to weighted Lebesgue spaces and not satisfying any boundary condition. The uniqueness result that we provide relies on the existence of suitable positive supersolutions of the adjoint equations. Under proper assumptions on the behavior at the boundary of the coefficients of the operator, such supersolutions are constructed, mainly using the distance function from the boundary.  相似文献   

4.
In this paper, we are concerned with the hyperbolic–parabolic mixed type equations with the non-homogeneous boundary condition. If it is degenerate on the boundary, the part of the boundary whose boundary value should be imposed, is determined by the entropy condition from the convection term. If there is no convection term in the equation, we show that the stability of solutions can be proved without any boundary condition. If the equation is completely degenerate, we show that the stability of solutions can be established just based on the partial boundary condition.  相似文献   

5.
This paper concerns a class of control systems governed by semilinear degenerate equations with boundary control in one-dimensional space. The control is proposed on the ‘degenerate’ part of the boundary. The control systems are shown to be approximately controllable by Kakutani's fixed point theorem.  相似文献   

6.
This paper is concerned with a class of quasilinear parabolic and elliptic equations in a bounded domain with both Dirichlet and nonlinear Neumann boundary conditions. The equation under consideration may be degenerate or singular depending on the property of the diffusion coefficient. The consideration of the class of equations is motivated by some heat-transfer problems where the heat capacity and thermal conductivity are both temperature dependent. The aim of the paper is to show the existence and uniqueness of a global time-dependent solution of the parabolic problem, existence of maximal and minimal steady-state solutions of the elliptic problem, including conditions for the uniqueness of a solution, and the asymptotic behavior of the time-dependent solution in relation to the steady-state solutions. Applications are given to some heat-transfer problems and an extended logistic reaction–diffusion equation.  相似文献   

7.
Using results on abstract evolutions equations and recently obtained results on elliptic operators with discontinuous coefficients including mixed boundary conditions we prove that quasilinear parabolic systems admit a local, classical solution in the space of p–integrable functions, for some p greater than 1, over a bounded two dimensional space domain. The treatment of such equations in a space of integrable functions enables us to define the normal component of the current across the boundary of any Lipschitz subset. As applications we have in mind systems of reaction diffusion equations, e.g. van Roosbroeck’s system.  相似文献   

8.
We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton–Jacobi–Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, the Hamiltonian is either strictly convex or satisfies an assumption similar of the one introduced by Barles–Souganidis (2000) for first-order Hamilton–Jacobi equations. This latter assumption allows to deal with equations with nonconvex Hamiltonians. We can also release the uniform parabolic requirement outside Σ. As a consequence, we prove the convergence of some everywhere degenerate second-order equations.  相似文献   

9.
We establish the existence of solutions for a class of quasilinear degenerate elliptic equations. The equations in this class satisfy a structure condition which provides ellipticity in the interior of the domain, and degeneracy only on the boundary. Equations of transonic gas dynamics, for example, satisfy this property in the region of subsonic flow and are degenerate across the sonic surface. We prove that the solution is smooth in the interior of the domain but may exhibit singular behavior at the degenerate boundary. The maximal rate of blow-up at the degenerate boundary is bounded by the “degree of degeneracy” in the principal coefficients of the quasilinear elliptic operator. Our methods and results apply to the problems recently studied by several authors which include the unsteady transonic small disturbance equation, the pressure-gradient equations of the compressible Euler equations, and the singular quasilinear anisotropic elliptic problems, and extend to the class of equations which satisfy the structure condition, such as the shallow water equation, compressible isentropic two-dimensional Euler equations, and general two-dimensional nonlinear wave equations. Our study provides a general framework to analyze degenerate elliptic problems arising in the self-similar reduction of a broad class of two-dimensional Cauchy problems.  相似文献   

10.
This work studies the large time behavior of free boundary and continuous dependence on nonlinearity for the Cauchy problem of a degenerate parabolic partial differential equation with absorption. Our objective is to give an explicit expression of speed of propagation of the solution and to show that the solution depends on the nonlinearity of the equation continuously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号