首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the domain Q = [0,∞)×[0,∞) of the variables (x, t), for the telegraph equation with a Dirac potential concentrated at a point (x0, t0) ∈ Q, we consider a mixed problem with initial (at t = 0) conditions on the solution and its derivative with respect to t and a condition on the boundary x = 0 which is a linear combination with coefficients depending on t of the solution and its first derivatives with respect to x and t (a directional derivative). We obtain formulas for the classical solution of this problem under certain conditions on the point (x0, t0), the coefficient of the Dirac potential, and the conditions of consistency of the initial and boundary data and the right-hand side of the equation at the point (0, 0). We study the behavior of the solution as the direction of the directional derivative in the boundary condition tends to a characteristic of the equation and obtain estimates of the difference between the corresponding solutions.  相似文献   

2.
In the strip П = (?1, 0) × ?, we establish the existence of solutions of the Cauchy problem for the Korteweg-de Vries equation u t + u xxx + uu x = 0 with initial condition either 1) u(?1, x) = ?(x), or 2) u(?1, x) = ?(?x), where θ is the Heaviside function. The solutions constructed in this paper are infinitely smooth for t ∈ (?1, 0) and rapidly decreasing as x → +∞. For the case of the first initial condition, we also establish uniqueness in a certain class. Similar special solutions of the KdV equation arise in the study of the asymptotic behavior with respect to small dispersion of the solutions of certain model problems in a neighborhood of lines of weak discontinuity.  相似文献   

3.
We study a mixed problem for the wave equation with integrable potential and with two-point boundary conditions of distinct orders for the case in which the corresponding spectral problem may have multiple spectrum. Based on the resolvent approach in the Fourier method and the Krylov convergence acceleration trick for Fourier series, we obtain a classical solution u(x, t) of this problem under minimal constraints on the initial condition u(x, 0) = ?(x). We use the Carleson–Hunt theorem to prove the convergence almost everywhere of the formal solution series in the limit case of ?(x) ∈ L p[0, 1], p > 1, and show that the formal solution is a generalized solution of the problem.  相似文献   

4.
The resolvent approach in the Fourier method, combined with Krylov’s ideas concerning convergence acceleration for Fourier series, is used to obtain a classical solution of a mixed problem for the wave equation with a summable potential, fixed ends, a zero initial position, and an initial velocity ψ(x), where ψ(x) is absolutely continuous, ψ'(x) ∈ L 2[0,1], and ψ(0) = ψ(1) = 0. In the case ψ(x) ∈ L[0,1], it is shown that the series of the formal solution converges uniformly and is a weak solution of the mixed problem.  相似文献   

5.
The convergence of the formal Fourier solution to a mixed problem for the wave equation with a summable potential is analyzed under weaker assumptions imposed on the initial position u(x, 0) = φ(x) than those required for a classical solution up to the case φ(x) ∈ Lp[0,1] for p > 1. It is shown that the formal solution series always converges and represents a weak solution of the mixed problem.  相似文献   

6.
The convergence of the formal Fourier solution to a mixed problem for the wave equation with a summable potential is analyzed under weaker assumptions imposed on the initial position u(x, 0) = φ(x) than those required for a classical solution up to the case φ(x)∈ Lp[0,1] for p > 1. It is shown that the formal solution series always converges and represents a weak solution of the mixed problem.  相似文献   

7.
The research considers the asymptotic behavior of solutions u ? of the Poisson equation in a domain ?-periodically perforated along manifold γ = ω ∩ {x 1 = 0} ≠ Ø with a nonlinear third type boundary condition ? v u ? + ?σ(x, u ?) = 0 on the boundary of the cavities. It is supposed that the perforations are balls of radius C 0?α, C 0 > 0, α = n ? 1 / n ? 2, n ≥ 3, periodically distributed along the manifold γ with period ? > 0. It has been shown that as ? → 0 the microscopic solutions can be approximated by the solution of an effective problem which contains in a transmission conditions a new nonlinear term representing the macroscopic contribution of the processes on the boundary of the microscopic cavities. This effect was first noticed in [1] where the similar problem was investigated for n = 3 and for the case where Ω is a domain periodically perforated over the whole volume. This paper provides a new method for the proof of the convergence of the solutions {u ?} to the solution of the effective problem is given. Furthermore, an improved approximation for the gradient of the microscopic solutions is constructed, and more accurate results are obtained with respect to the energy norm proved via a corrector term. Note that this approach can be generalized to achieve results for perforations of more complex geometry.  相似文献   

8.
We study a projection-difference method for approximately solving the Cauchy problem u′(t) + A(t)u(t) + K(t)u(t) = h(t), u(0) = 0 for a linear differential-operator equation in a Hilbert space, where A(t) is a self-adjoint operator and K(t) is an operator subordinate to A(t). Time discretization is based on a three-level difference scheme, and space discretization is carried out by the Galerkin method. Under certain smoothness conditions on the function h(t), we obtain estimates for the convergence rate of the approximate solutions to the exact solution.  相似文献   

9.
A boundary value problem for a singularly perturbed parabolic convection-diffusion equation is considered in a rectangular domain in x and t; the perturbation parameter ? multiplying the highest derivative takes arbitrary values in the half-open interval (0,1]. For the boundary value problem, we construct a scheme based on the method of lines in x passing through N 0+1 points of the mesh with respect to t. To solve the problem on a set of intervals, we apply a domain decomposition method (on overlapping subdomains with the overlap width δ), which is a modification of the Schwarz method. For the continual schemes of the decomposition method, we study how sequential and parallel computations, the order of priority in which the subproblems are sequentially solved on the subdomains, and the value of the parameter ? (as well as the values of N 0, δ) influence the convergence rate of the decomposition scheme (as N 0 → ∞), and also computational costs for solving the scheme and time required for its solution (unless a prescribed tolerance is achieved). For convection-diffusion equations, in contrast to reaction-diffusion ones, the sequential scheme turns out to be more efficient than the parallel scheme.  相似文献   

10.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where \({V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}\). Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n ? 2)l = ω 1. We prove that if \({m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if \({p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has global solutions for some u 0 ≥ 0.  相似文献   

11.
The Dirichlet problem for a singularly perturbed parabolic reaction-diffusion equation with a piecewise continuous initial condition in a rectangular domain is considered. The higher order derivative in the equation is multiplied by a parameter ?2, where ? ∈ (0, 1]. When ? is small, a boundary and an interior layer (with the characteristic width ?) appear, respectively, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the reduced equation passing through the discontinuity point of the initial function; for fixed ?, these layers have limited smoothness. Using the method of additive splitting of singularities (induced by the discontinuities of the initial function and its low-order derivatives) and the condensing grid method (piecewise uniform grids that condense in a neighborhood of the boundary layers), a finite difference scheme is constructed that converges ?-uniformly at a rate of O(N ?2ln2 N + n 0 ?1 ), where N + 1 and N 0 + 1 are the numbers of the mesh points in x and t, respectively. Based on the Richardson technique, a scheme that converges ?-uniformly at a rate of O(N ?3 + N 0 ?2 ) is constructed. It is proved that the Richardson technique cannot construct a scheme that converges in ?-uniformly in x with an order greater than three.  相似文献   

12.
The Cauchy problem for a quasilinear parabolic equation with a small parameter ε at the highest derivative is considered. The initial function, which has the form of a smoothed step, depends on a “stretched” variable x/ρ, where ρ is another small parameter. This problem statement is of interest for applications as a model of propagation of nonlinear waves in physical systems in the presence of small dissipation. In the case corresponding to a compression wave, asymptotic solutions of the problem are constructed in the parameters ε and ρ independently tending to zero. It is assumed that ε/ρ → 0. Far from the line of discontinuity of the limit solution, asymptotic solutions are constructed in the form of series in powers of ε and ρ. In a small domain of linear approximation, an asymptotic solution is constructed in the form of a series in powers of the ratio ρ/ε. The coefficients of the inner expansion are determined from a recursive chain of initial value problems. The asymptotics of these coefficients at infinity is studied. The time of reconstruction of the scale of the internal space variable is determined.  相似文献   

13.
This paper deals with the electrostatic MEMS-device parabolic equation u_t-?u =λf(x)/(1-u)~p in a bounded domain ? of R~N,with Dirichlet boundary condition,an initial condition u0(x) ∈ [0,1) and a nonnegative profile f,where λ 0,p 1.The study is motivated by a simplified micro-electromechanical system(MEMS for short) device model.In this paper,the author first gives an asymptotic behavior of the quenching time T*for the solution u to the parabolic problem with zero initial data.Secondly,the author investigates when the solution u will quench,with general λ,u0(x).Finally,a global existence in the MEMS modeling is shown.  相似文献   

14.
For some classes of one-dimensional nonlinear wave equations, solutions are Hölder continuous and the ODEs for characteristics admit multiple solutions. Introducing an additional conservation equation and a suitable set of transformed variables, one obtains a new ODE whose right hand side is either Lipschitz continuous or has directionally bounded variation. In this way, a unique characteristic can be singled out through each initial point. This approach yields the uniqueness of conservative solutions to various equations, including the Camassa-Holm and the variational wave equation utt ? c(u)(c(u)ux )x = 0, for general initial data in H1(R).  相似文献   

15.
We study the inverse problem of the reconstruction of the coefficient ?(x, t) = ?0(x, t) + r(x) multiplying ut in a nonstationary parabolic equation. Here ?0(x, t) ≥ ?0 > 0 is a given function, and r(x) ≥ 0 is an unknown function of the class L(Ω). In addition to the initial and boundary conditions (the data of the direct problem), we pose the problem of nonlocal observation in the form ∫0Tu(x, t) (t) = χ(x) with a known measure (t) and a function χ(x). We separately consider the case (t) = ω(t)dt of integral observation with a smooth function ω(t). We obtain sufficient conditions for the existence and uniqueness of the solution of the inverse problem, which have the form of ready-to-verify inequalities. We suggest an iterative procedure for finding the solution and prove its convergence. Examples of particular inverse problems for which the assumptions of our theorems hold are presented.  相似文献   

16.
We study a nonlinear equation in the half-space {x 1 > 0} with a Hardy potential, specifically
$$ - \Delta u - \frac{\mu }{{x_1^2}}u + {u^p} = 0in\mathbb{R}_ + ^n,$$
where p > 1 and ?∞ < μ < 1/4. The admissible boundary behavior of the positive solutions is either O(x 1 ?2/(p?1)) as x 1 → 0, or is determined by the solutions of the linear problem \( - \Delta h - \frac{\mu }{{x_1^2}}h = 0\). In the first part we study in full detail the separable solutions of the linear equations for the whole range of μ. In the second part, by means of sub and supersolutions we construct separable solutions of the nonlinear problem which behave like O(x 1 ?2/(p?1)) near the origin and which, away from the origin, have exactly the same asymptotic behavior as the separable solutions of the linear problem. In the last part we construct solutions that behave like O(x 1 ?2/(p?1)) at some prescribed parts of the boundary, while at the rest of the boundary the solutions decay or blowup at a slower rate determined by the linear part of the equation.
  相似文献   

17.
It is well known that ill-posed problems in the space V[a, b] of functions of bounded variation cannot generally be regularized and the approximate solutions do not converge to the exact one with respect to the variation. However, this convergence can be achieved on separable subspaces of V[a, b]. It is shown that the Sobolev spaces W 1 m [a, b], m ∈ ? can be used as such subspaces. The classes of regularizing functionals are indicated that guarantee that the approximate solutions produced by the Tikhonov variational scheme for ill-posed problems converge with respect to the norm of W 1 m [a, b]. In turn, this ensures the convergence of the approximate solutions with respect to the variation and the higher order total variations.  相似文献   

18.
The Dirichlet problem for a Fujita-type equation, i.e., a second-order quasilinear uniformly elliptic equation is considered in domains Ωε with spherical or cylindrical cavities of characteristic size ε. The form of the function in the condition on the cavities’ boundaries depends on ε. For ε tending to zero and the number of cavities increasing simultaneously, sufficient conditions are established for the convergence of the family of solutions {u ε(x)} of this problem to the solution u(х) of a similar problem in the domain Ω with no cavities with the same boundary conditions imposed on the common part of the boundaries ?Ω and ?Ωε. Convergence rate estimates are given.  相似文献   

19.
Global well-posedness of the initial-boundary value problem for the stochastic generalized Kuramoto- Sivashinsky equation in a bounded domain D with a multiplicative noise is studied. It is shown that under suitable sufficient conditions, for any initial data u0L2(D × Ω), this problem has a unique global solution u in the space L2(Ω, C([0, T], L2(D))) for any T >0, and the solution map u0 ? u is Lipschitz continuous.  相似文献   

20.
Based on the eigensystem {λj,φj}of -Δ, the multiple solutions for nonlinear problem Δu f(u) = 0 in Ω, u = 0 on (?)Ωare approximated. A new search-extension method (SEM) is proposed, which consists of three algorithms in three level subspaces. Numerical experiments for f(u) = u3 in a square and L-shape domain are presented. The results show that there exist at least 3k - 1 distinct nonzero solutions corresponding to each κ-ple eigenvalue of -Δ(Conjecture 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号