首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

2.
Suppose that m ≥ 2, numbers p1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ... + \frac{1}{{{p_m}}} < 1\), and functions γ1\({L^{{p_1}}}\)(?1), …, γ m \({L^{{p_m}}}\)(?1) are given. It is proved that if the set of “resonance points” of each of these functions is nonempty and the so-called “resonance condition” holds, then there are arbitrarily small (in norm) perturbations Δγk\({L^{{p_k}}}\)(?1) under which the resonance set of each function γk + Δγk coincides with that of γk for 1 ≤ km, but \({\left\| {\int\limits_0^t {\prod\limits_{k = 0}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]d\tau } } } \right\|_{{L^\infty }\left( {{\mathbb{R}^1}} \right)}} = \infty \). The notion of a resonance point and the resonance condition for functions in the spaces L p (?1), p ∈ (1, +∞], were introduced by the author in his previous papers.  相似文献   

3.
In this paper, characterizations of the embeddings between weighted Copson function spaces \(Co{p_{{p_1},{q_1}}}\left( {{u_1},{v_1}} \right)\) and weighted Cesàro function spaces \(Ce{s_{{p_2},{q_2}}}\left( {{u_2},{v_2}} \right)\) are given. In particular, two-sided estimates of the optimal constant c in the inequality
$${\left( {\int_0^\infty {{{\left( {\int_0^t {f{{\left( \tau \right)}^{{p_2}}}{v_2}\left( \tau \right)d\tau } } \right)}^{{q_2}/{p_2}}}{u_2}\left( t \right)dt} } \right)^{1/{q_2}}} \leqslant c{\left( {\int_0^\infty {{{\left( {\int_t^\infty {f{{\left( \tau \right)}^{{p_1}}}{v_1}\left( \tau \right)d\tau } } \right)}^{{q_1}/{p_1}}}{u_1}\left( t \right)dt} } \right)^{1/{q_1}}},$$
where p1, p2, q1, q2 ∈ (0,∞), p2q2 and u1, u2, v1, v2 are weights on (0,∞), are obtained. The most innovative part consists of the fact that possibly different parameters p1 and p2 and possibly different inner weights v1 and v2 are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
  相似文献   

4.
For an odd prime p, let K/k be a Galois p-extension and S be a set of primes of k containing the primes lying over p. For the p r th roots \({\mu _{{p^r}}}\left( K \right)\) of unity in K, we describe the so-called Sha group Sha S (G(K/k), \({\mu _{{p^r}}}\left( K \right)\)) in terms of the Galois groups of certain subfields of K corresponding to S. As an application, we investigate a tower of extension fields \({\left\{ {{k_{{T^i}}}} \right\}_i} \geqslant 0\) where \({k_{{T^{i + 1}}}}\) is defined as the fixed field of a free part of the Galois group of the Bertrandias and Payan extension of \({k_{{T^i}}}\) over \({k_{{T^i}}}\). This is called a tower of torsion parts of the Bertrandias and Payan extensions over k. We find a relation between the degrees \({\left\{ {\left[ {{k_{{T^{i + 1}}}}:{k_{{T^i}}}} \right]} \right\}_{i \geqslant 0}}\) over the towers. Using this formula we investigate whether the towers are stationary or not.  相似文献   

5.
Set \({T=N^{\frac{1}{3}-\epsilon}}\). It is proved that for all but \({\ll TL^{-H},\,H > 0}\), exceptional prime numbers \({k\leq T}\) and almost all integers b 1, b 2 co-prime to k, almost all integers \({n\sim N}\) satisfying \({n\equiv b_{1}+b_{2}(mod\,k)}\) can be written as the sum of two primes p 1 and p 2 satisfying \({p_{i}\equiv b_{i}(mod\,k),\,i=1,2}\). For prime numbers \({k\leq N^{\frac{5}{24}-\epsilon}}\), this result is even true for all but \({\ll (\log\,N)^{D}}\) primes k and all integers b 1, b 2 co-prime to k.  相似文献   

6.
We consider a class of nonlinear recurrent systems of the form \( {\Lambda_p} = \frac{1}{p}\sum\limits_{{p_1} = 1}^{p - 1} {f\left( {\frac{{{p_1}}}{p}} \right){\Lambda_{{p_1}}}{\Lambda_{p - {p_1}}}} \), p > 1, where f is a given function on the interval [0, 1] and Λ1 = x is an adjustable real-valued parameter. Under some suitable assumptions on the function f, we show that there exists an initial value x * for which Λ p = Λ p (x * ) → const as p. More precise asymptotics of Λ p is also derived.  相似文献   

7.
Gosper introduced the functions sinqz and cosqz as q-analogues for the trigonometric functions sin z and cos z respectively. He stated a variety of identities involving these two q-trigonometric functions along with certain constants denoted by \({\Pi _{{q^n}}}\) (n ∈ N). Gosper noticed that all his formulas on these constants have more than two of the \({\Pi _{{q^n}}}\). So, it is natural to raise the question of establishing identities involving only two of the \({\Pi _{{q^n}}}\). In this paper, our main goal is to give examples of such formulas in only two \({\Pi _{{q^n}}}\).  相似文献   

8.
In this note we consider Wente's type inequality on the Lorentz-Sobolev space.If▽f∈L~p1,q1(R~n),G ∈ L~(p2,q2)(R~n) and div G≡0 in the sense of distribution where(1/p1)+(1/P2)=(1/q1)+(1/q2)=1,1P1,P2∞,it is known that G·▽f belongs to the Hardy space H~1 and furthermore‖G·▽f‖H~1≤C‖▽f‖L~(p1,q1)(R~2)‖G‖L~(p2,q2)(R~2).Reader can see[9]Section 4.Here we give a new proof of this result.Our proof depends on an estimate of a maximal operator on the Lorentz space which is of some independent interest.Finally,we use this inequality to get a generalisation of Bethuel's inequality.  相似文献   

9.
It is known that if p is a sufficiently large prime, then, for every function f: Zp → [0, 1], there exists a continuous function f′: T → [0, 1] on the circle such that the averages of f and f′ across any prescribed system of linear forms of complexity 1 differ by at most ∈. This result follows from work of Sisask, building on Fourier-analytic arguments of Croot that answered a question of Green. We generalize this result to systems of complexity at most 2, replacing T with the torus T2 equipped with a specific filtration. To this end, we use a notion of modelling for filtered nilmanifolds, that we define in terms of equidistributed maps and combine this notion with tools of quadratic Fourier analysis. Our results yield expressions on the torus for limits of combinatorial quantities involving systems of complexity 2 on Zp. For instance, let m4(α, Zp) denote the minimum, over all sets A ? Zp of cardinality at least αp, of the density of 4-term arithmetic progressions inside A. We show that limp→∞ m4(α, Zp) is equal to the infimum, over all continuous functions f: T2 →[0, 1] with \({\smallint _{{T^2}}}f \geqslant a\), of the integral
$$\int_{{T^5}} {f\left( {\begin{array}{*{20}{c}}{{x_1}} \\ {{y_1}} \end{array}} \right)} f\left( {\begin{array}{*{20}{c}}{{x_1} + {x_2}} \\ {{y_1} + {y_2}} \end{array}} \right)f\left( {\begin{array}{*{20}{c}}{{x_1} + 2{x_2}} \\ {{y_1} + 2{y_2} + {y_3}} \end{array}} \right).f\left( {\begin{array}{*{20}{c}}{{x_1} + 3{x_2}} \\ {{y_1} + 3{y_2} = 3{y_3}} \end{array}} \right)d{\mu _{{T^5}}}({x_1},{x_2},{y_1},{y_2},{y_3})$$
  相似文献   

10.
In this paper, we compute the p-adic valuation of exponential sums associated to trinomials \(F\left( X \right) = a{X^{{d_1}}} + b{X^{{d_2}}} + c{X^{{d_3}}}\) over Fp. As a byproduct of our results, we obtain restrictions for permutation polynomials of type \(a{X^{{d_1}}} + b{X^{{d_2}}} + c{X^{{d_3}}}\) over Fp.  相似文献   

11.
Let m ≥ 2, the numbers p 1,…, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ L p1(?1), …, γ m \({L^{{p_m}}}\)(?1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces L p (?1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ km are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ?1.  相似文献   

12.
Let λ1, λ2 be positive real numbers such that \({\frac{{\lambda_1}}{{\lambda_2}}}\) is irrational and algebraic. For any (C, c) well-spaced sequence \({\mathcal {V} = \{{v_i}\}_{i = 1}^\infty}\) and δ > 0 let \({E( {\mathcal {V},X,\delta})}\) denote the number of elements \({v \in \mathcal {V}, v \le X}\) for which the inequality
$| {\lambda_1 p_1 + \lambda_2 p_2 - v} | < X^{- \delta}$
is not solvable in primes p 1, p 2. In this paper it is proved that
$E( {\mathcal {V},X,\delta}) \ll X^{\frac{4}{5} + \delta + \varepsilon}$
for any \({\varepsilon > 0}\). This result constitutes an improvement upon that of Brüdern, Cook, and Perelli for the range \({\frac{2}{{15}} < \delta < \frac{1}{5}}\).
  相似文献   

13.
In this paper we consider the Schrödinger operator ?Δ + V on \({\mathbb R^d}\), where the nonnegative potential V belongs to the reverse Hölder class \({B_{q_{_1}}}\) for some \({q_{_1}\geq \frac{d}{2}}\) with d ≥ 3. Let \({H^1_L(\mathbb R^d)}\) denote the Hardy space related to the Schrödinger operator L = ?Δ + V and \({BMO_L(\mathbb R^d)}\) be the dual space of \({H^1_L(\mathbb R^d)}\). We show that the Schrödinger type operator \({\nabla(-\Delta +V)^{-\beta}}\) is bounded from \({H^1_L(\mathbb R^d)}\) into \({L^p(\mathbb R^d)}\) for \({p=\frac{d}{d-(2\beta-1)}}\) with \({ \frac{1}{2}<\beta<\frac{3}{2} }\) and that it is also bounded from \({L^p(\mathbb R^d)}\) into \({BMO_L(\mathbb R^d)}\) for \({p=\frac{d}{2\beta-1}}\) with \({ \frac{1}{2}<\beta< 2}\).  相似文献   

14.
For a C0-semigroup \({\{U(t)\}_{t \geq 0}}\) of linear operators in a Banach space \({{\mathfrak{B}}}\) with generator A, we describe the set of elements \({x \in {\mathfrak{B}}}\) whose orbits U(t)x can be extended to entire \({{\mathfrak{B}}}\)-valued functions of a finite order and a finite type, and establish the conditions under which this set is dense in \({{\mathfrak{B}}}\). The Hille problem of finding vectors \({x \in {\mathfrak{B}}}\) such that there exists the limit \({\lim\limits_{n \to \infty}\left(I + \frac{tA}{n}\right)^{n}x}\) is also solved in the paper. We prove that this limit exists if and only if x is an entire vector of the operator A, and if this is the case, then it coincides with U(t)x.  相似文献   

15.
Given graphs F and G, denote by \({\tau_F}(G)\) the cardinality of a smallest subset \(T {\subseteq}V(G)\) that meets every maximal F-free subgraph of G. Erdös, Gallai and Tuza [9] considered the question of bounding \(\tau_{\overline{K_2}}(G)\) by a constant fraction of |G|. In this paper, we will give a complete answer to the following question: for which F, is τ F (G) bounded by a constant fraction of |G|?In addition, for those graphs F for which \({\tau_F}(G)\) is not bounded by any fraction of |G|, we prove that \(\tau_F(G)\le|G|-\frac{1}{2}\sqrt{|G|}+\frac{1}{2}\), provided F is not K k or \(\overline{K_k}\).  相似文献   

16.
We study the distribution of the numbers of \({F_{{q^r}}}\)-rational points of hyperelliptic curves over a finite field Fq in odd characteristic. This extends the result of Kurlberg and Rudnick [4]. We also study the distribution of the number of \({F_{{q^r}}}\)-rational points and the trace of high powers of the Frobenius class of real hyperelliptic curves over a finite field Fq in even characteristic.  相似文献   

17.
Let (F n ) n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as
$${\left[ {\begin{array}{*{20}{c}} m \\ k \end{array}} \right]_F} = \frac{{{F_{m - k + 1}} \cdots {F_{m - 1}}{F_m}}}{{{F_1} \cdots {F_k}}}$$
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±2 (mod 5), then \(p{\left| {\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]} \right._F}\) for all integers a ≥ 1. In 2015, Marques and Trojovský worked on the p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all a ≥ 1 when p ≠ 5. In this paper, we shall provide the exact p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a, b ≥ 1 and for all prime number p.
  相似文献   

18.
We introduce a class of tri-linear operators that combine features of the bilinear Hilbert transform and paraproduct. For two instances of these operators, we prove boundedness property in a large range D = {(p1,p2,p_3) ∈ R~3 : 1 p1,p2 ∞,1/(p1)+ 1/(p2)3/2,1 p3 ∞}.  相似文献   

19.
In this paper, a complete classification is achieved of all the regular covers of the complete bipartite graphs \(K_{n,n}\) with cyclic covering transformation group, whose fibre-preserving automorphism group acts 2-arc-transitively. All these covers consist of one threefold covers of \(K_{6,6}\), one twofold cover of \(K_{12, 12}\) and one infinite family X(rp) of p-fold covers of \(K_{p^r,p^r}\) with p a prime and r an integer such that \(p^r\ge 3\). This infinite family X(rp) can be derived by a very simple and nice voltage assignment f as follows: \(X(r, p)=K_{p^r, p^r}\times _f \mathbb {Z}_p\), where \(K_{p^r, p^r}\) is a complete bipartite graph with the bipartition \(V=\{ \alpha \bigm |\alpha \in V(r,p)\}\cup \{ \alpha '\bigm |\alpha \in V(r,p)\}\) for the r-dimensional vector space V(rp) over the field of order p and \(f_{\alpha ,\beta '}=\sum _{i=1}^ra_ib_i,\,\, \mathrm{for\,\,all}\,\,\alpha =(a_i)_r, \beta =(b_i)_r\in V(r,p)\).  相似文献   

20.
We propose a quantization of the Kadomtsev–Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses m = 1, 2,.... The Hamiltonian is Galilei-invariant and includes the split and merge terms \(\Psi _{{m_1}}^\dag \Psi _{{m_2}}^\dag {\Psi _{{m_1} + {m_2}}}\) and \(\Psi _{{m_1} + {m_2}}^\dag {\Psi _{{m_1}}}{\Psi _{{m_2}}}\) for all combinations of particles with masses m 1, m 2, and m 1 + m 2 for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass M=8 sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号