首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 196 毫秒
1.
Let G be a nonabelian group, and associate the noncommuting graph ?(G) with G as follows: the vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. Let S 4(q) be the projective symplectic simple group, where q is a prime power. We prove that if G is a group with ?(G) ? ?(S 4(q)) then G ? S 4(q).  相似文献   

2.
A group G is invariably generated by a subset S of G if G = 〈sg(s) | sS〉 for each choice of g(s) ∈ G, sS. Answering two questions posed by Kantor, Lubotzky and Shalev in [8], we prove that the free prosoluble group of rank d ≥ 2 cannot be invariably generated by a finite set of elements, while the free solvable profinite group of rank d and derived length l is invariably generated by precisely l(d ? 1) + 1 elements.  相似文献   

3.
Let G be a group. An element gG is called a test element of G if for every endomorphism ? : GG, ?(g) = g implies ? is an automorphism. We prove that for a finitely generated profinite group G, gG is a test element of G if and only if it is not contained in a proper retract of G. Using this result we prove that an endomorphism of a free pro-p group of finite rank which preserves an automorphic orbit of a nontrivial element must be an automorphism. We give numerous explicit examples of test elements in free pro-p groups and Demushkin groups. By relating test elements in finitely generated residually finite-p Turner groups to test elements in their pro-p completions, we provide new examples of test elements in free discrete groups and surface groups. Moreover, we prove that the set of test elements of a free discrete group of finite rank is dense in the profinite topology.  相似文献   

4.
Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an aS-group. We study some properties of aS-groups. For instance, it is shown that a nilpotent group G is an aS-group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an aS-group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an aS-group. Finally, it is shown that if G is an aS-group and |G| ≠ pq, p, where p and q are primes, then G has a triple factorization.  相似文献   

5.
Let G be a finite group and write cd(G) for the degree set of the complex irreducible characters of G. The group G is said to satisfy the two-prime hypothesis if for any distinct degrees a, b 2 cd(G), the total number of (not necessarily different) primes of the greatest common divisor gcd(a, b) is at most 2. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL2(q) for q ? 7.  相似文献   

6.
Let S be a subset of a finite abelian group G. The Cayley sum graph Cay+(G, S) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + hS. We call a finite abelian group G a Cayley sum integral group if for every subset S of G, Cay+(G, S) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z3 and Zn2 n, n ≥ 1, where Zk is the group of integers modulo k. Also, we classify simple connected cubic integral Cayley sum graphs.  相似文献   

7.
Let G be a finite group. The main result of this paper is as follows: If G is a finite group, such that Γ(G) = Γ(2G2(q)), where q = 32n+1 for some n ≥ 1, then G has a (unique) nonabelian composition factor isomorphic to 2 G 2(q). We infer that if G is a finite group satisfying |G| = |2 G 2(q)| and Γ(G) = Γ (2 G 2(q)) then G ? = 2 G 2(q). This enables us to give new proofs for some theorems; e.g., a conjecture of W. Shi and J. Bi. Some applications of this result are also considered to the problem of recognition by element orders of finite groups.  相似文献   

8.
The rank of a profinite group G is the basic invariant \({{\rm rk}(G):={\rm sup}\{d(H) \mid H \leq G\}}\), where H ranges over all closed subgroups of G and d(H) denotes the minimal cardinality of a topological generating set for H. A compact topological group G admits the structure of a p-adic Lie group if and only if it contains an open pro-p subgroup of finite rank. For every compact p-adic Lie group G one has rk(G) ≥ dim(G), where dim(G) denotes the dimension of G as a p-adic manifold. In this paper we consider the converse problem, bounding rk(G) in terms of dim(G). Every profinite group G of finite rank admits a maximal finite normal subgroup, its periodic radical π(G). One of our main results is the following. Let G be a compact p-adic Lie group such that π(G) = 1, and suppose that p is odd. If \(\{g \in G \mid g^{p-1}=1 \}\) is equal to {1}, then rk(G) = dim(G).  相似文献   

9.
It is proved that, if G is a finite group that has the same set of element orders as the simple group D p (q), where p is prime, p ≥ 5 and q ∈ {2, 3, 5}, then the commutator group of G/F(G) is isomorphic to D p (q), the subgroup F(G) is equal to 1 for q = 5 and to O q (G) for q ∈ {2, 3}, F(G) ≤ G′, and |G/G′| ≤ 2.  相似文献   

10.
Let G be a finite group. An element gG is called a vanishing element if there exists an irreducible complex character χ of G such that χ(g)= 0. Denote by Vo(G) the set of orders of vanishing elements of G. Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let G be a finite group and M a finite nonabelian simple group such that Vo(G) = Vo(M) and |G| = |M|. Then GM. We answer in affirmative this conjecture for M = Sz(q), where q = 22n+1 and either q ? 1, \(q - \sqrt {2q} + 1\) or q + \(\sqrt {2q} + 1\) is a prime number, and M = F4(q), where q = 2 n and either q4 + 1 or q4 ? q2 + 1 is a prime number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号