首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic vehicle routing problem is concerned with the design of a set of routes to serve a given number of customers, minimising the total distance travelled. In that problem, each vehicle is assumed to be used only once during a planning period, which is typically a day, and therefore is unrepresentative of many practical situations, where a vehicle makes several journeys during a day. The present authors have previously published an algorithm which outperformed an experienced load planner working on the complex, real-life problems of Burton's Biscuits, where vehicles make more than one trip each day. This present paper uses a simplified version of that general algorithm, in order to compare it with a recently published heuristic specially designed for the theoretical multi-trip vehicle routing problem.  相似文献   

2.
In this paper, we consider a variant of the open vehicle routing problem in which vehicles depart from the depot, visit a set of customers, and end their routes at special nodes called driver nodes. A driver node can be the home of the driver or a parking lot where the vehicle will stay overnight. The resulting problem is referred to as the open vehicle routing problem with driver nodes (OVRP-d). We consider three classes of OVRP-d: with no time constraints, with a maximum route duration, and with both a maximum route duration as well as time deadlines for visiting customers. For the solution of these problems, which are not addressed previously in the literature, we develop a new tabu search heuristic. Computational results on randomly generated instances indicate that the new heuristic exhibits a good performance both in terms of the solution quality and computation time.  相似文献   

3.
This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms the original one, and can produce good solutions when compared with the existing heuristics. These results seem to indicate that the enhanced heuristic is an alternative to solve the capacitated vehicle routing problem.  相似文献   

4.
This paper introduces a new class of problem, the disrupted vehicle routing problem (VRP), which deals with the disruptions that occur at the execution stage of a VRP plan. The paper then focuses on one type of such problem, in which a vehicle breaks down during the delivery and a new routing solution needs to be quickly generated to minimise the costs. Two Tabu Search algorithms are developed to solve the problem and are assessed in relation to an exact algorithm. A set of test problems has been generated and computational results from experiments using the heuristic algorithms are presented.  相似文献   

5.
In the partial accessibility constrained vehicle routing problem, a route can be covered by two types of vehicles, i.e. truck or truck + trailer. Some customers are accessible by both vehicle types, whereas others solely by trucks. After introducing an integer programming formulation for the problem, we describe a two-phase heuristic method which extends a classical vehicle routing algorithm. Since it is necessary to solve a combinatorial problem that has some similarities with the generalized assignment problem, we propose an enumerative procedure in which bounds are obtained from a Lagrangian relaxation. The routine provides very encouraging results on a set of test problems.  相似文献   

6.
This paper presents a unified tabu search heuristic for the vehicle routing problem with time windows and for two important generalizations: the periodic and the multi-depot vehicle routing problems with time windows. The major benefits of the approach are its speed, simplicity and flexibility. The performance of the heuristic is assessed by comparing it to alternative methods on benchmark instances of the vehicle routing problem with time windows. Computational experiments are also reported on new randomly generated instances for each of the two generalizations.  相似文献   

7.
In this paper we revise and modify an old branch-and-bound method for solving the asymmetric distance–constrained vehicle routing problem suggested by Laporte et al. in 1987. Our modification is based on reformulating distance–constrained vehicle routing problem into a travelling salesman problem, and on using assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance based branching rules. Since our method is fast but memory consuming, it could stop before optimality is proven. Therefore, we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. As far as we know, the instances that we have solved exactly (up to 1000 customers) are much larger than the instances considered for other vehicle routing problem models from the recent literature. So, despite of its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used for solving other types of vehicle routing problems.  相似文献   

8.
This article presents a vehicle routing problem with time windows, multiple trips, a limited number of vehicles and loading constraints for circular objects. This is a real problem experienced by a home delivery service company. A linear model is proposed to handle small problems and a two-step heuristic method to solve real size instances: the first step builds an initial solution through the modification of the Solomon I1 sequential insertion heuristic, and the second step improves the initial solution through the Tabu search algorithm proposed; in both steps, the problems related to circle packing with different sizes and bin packing are solved jointly with the use of heuristics. Finally, the computing results for two different sets of instances are presented.  相似文献   

9.
This article addresses an extension of the multi-depot vehicle routing problem in which vehicles may be replenished at intermediate depots along their route. It proposes a heuristic combining the adaptative memory principle, a tabu search method for the solution of subproblems, and integer programming. Tests are conducted on randomly generated instances.  相似文献   

10.
In the multi-depot vehicle routing problem (MDVRP), there are several depots where vehicles can start and end their routes. The objective is to minimize the total distance travelled by all vehicles across all depots. The min-max multi-depot vehicle routing problem (Min-Max MDVRP) is a variant of the standard MDVRP. The primary objective is to minimize the length of the longest route. We develop a heuristic (denoted by MD) for the Min-Max MDVRP that has three stages: (1) simplify the multi-depot problem into a single depot problem and solve the simplified problem; (2) improve the maximal route; (3) improve all routes by exchanging customers between routes. MD is compared with two alternative heuristics that we also develop and an existing method from the literature on a set of 20 test instances. MD produces 15 best solutions and is the top performer. Additional computational experiments on instances with uniform and non-uniform distributions of customers and varying customer-to-vehicle ratios and with real-world data further demonstrate MD’s effectiveness in producing high-quality results.  相似文献   

11.
In considering route optimization at a series of express stages from pickup to delivery via the intercity linehaul, we introduce the two-echelon vehicle routing problem with satellite bi-synchronization (2E-VRP-SBS) from the perspective of modeling the routing problems of two-echelon networks. The 2E-VRP-SBS involves the inter-satellite linehaul on the first echelon, and the pickups from senders to origin satellites (i.e., satellites for cargo collection) and deliveries from destination satellites (i.e., satellites for cargo deliveries) to receivers on the second echelon. The 2E-VRP-SBS integrates satellite bi-synchronization constraints, multiple vehicles, and time window constraints on the two-echelon network and aims to find cost-minimizing routes for various types of trucks. Satellite bi-synchronization constraints, which synchronously guarantee the synchronization at origin satellites and the synchronization at destination satellites, provide an innovative method to formulate the two-echelon routing problem. In this study, we develop a mixed-integer programming model for the 2E-VRP-SBS. An exact method using CPLEX solver is presented and a modified adaptive large neighborhood search is conducted. Furthermore, the effectiveness of the 2E-VRP-SBS formulation and the applicability of the heuristic for various instances are experimentally evaluated.  相似文献   

12.
In this paper, we consider the open vehicle routing problem with time windows (OVRPTW). The OVRPTW seeks to find a set of non-depot returning vehicle routes, for a fleet of capacitated vehicles, to satisfy customers’ requirements, within fixed time intervals that represent the earliest and latest times during the day that customers’ service can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns. The model is solved using a greedy look-ahead route construction heuristic algorithm, which utilizes time windows related information via composite customer selection and route-insertion criteria. These criteria exploit the interrelationships between customers, introduced by time windows, that dictate the sequence in which vehicles must visit customers. Computational results on a set of benchmark problems from the literature provide very good results and indicate the applicability of the methodology in real-life routing applications.  相似文献   

13.
In this study, a heuristic free from parameter tuning is introduced to solve the vehicle routing problem (VRP) with two conflicting objectives. The problem which has been presented is the designing of optimal routes: minimizing both the number of vehicles and the maximum route length. This problem, even in the case of its single objective form, is NP-hard. The proposed self-tuning heuristic (STH) is based on local search and has two parameters which are updated dynamically throughout the search process. The most important advantage of the algorithm is the application convenience for the end-users. STH is tested on the instances of a multi-objective problem in school bus routing and classical vehicle routing. Computational experiments, when compared with the prior approaches proposed for the multi-objective routing of school buses problem, confirm the effectiveness of STH. STH also finds high-quality solutions for multi-objective VRPs.  相似文献   

14.
We investigate an extension to the classical insertion-based heuristic for the vehicle routing problem with backhauling (VRPB). It is based on the idea of inserting more than one backhaul at a time. This method is tested on data sets with single and multiple depots with encouraging results at no additional computational burden. This approach can also be useful in generating good starting solutions for the more computer-intensive meta-heuristics.  相似文献   

15.
This paper considers the design and analysis of algorithms for the multi-depot vehicle routing problem with time windows (MDVRPTW). Given the intrinsic difficulty of this problem class, approximation methods of the type ‘cluster first, route second’ (two-step approaches) seem to offer the most promise for practical size problems. After describing six heuristics for the cluster part (assignment of customers to depots) an initial computational study of their performance is conducted. Finding, as expected, that the heuristics with the best results (in terms of the routing results) are those with the largest computational efforts.  相似文献   

16.
In open vehicle routing problems, the vehicles are not required to return to the depot after completing service. In this paper, we present the first exact optimization algorithm for the open version of the well-known capacitated vehicle routing problem (CVRP). The algorithm is based on branch-and-cut. We show that, even though the open CVRP initially looks like a minor variation of the standard CVRP, the integer programming formulation and cutting planes need to be modified in subtle ways. Computational results are given for several standard test instances, which enables us for the first time to assess the quality of existing heuristic methods, and to compare the relative difficulty of open and closed versions of the same problem.  相似文献   

17.
In this paper, another version of the vehicle routing problem (VRP)—the open vehicle routing problem (OVRP) is studied, in which the vehicles are not required to return to the depot, but if they do, it must be by revisiting the customers assigned to them in the reverse order. By exploiting the special structure of this type of problem, we present a new tabu search heuristic for finding the routes that minimize two objectives while satisfying three constraints. The computational results are provided and compared with two other methods in the literature.  相似文献   

18.
This work deals with a new combinatorial optimization problem, the two-dimensional loading capacitated vehicle routing problem with time windows which is a realistic extension of the well known vehicle routing problem. The studied problem consists in determining vehicle trips to deliver rectangular objects to a set of customers with known time windows, using a homogeneous fleet of vehicles, while ensuring a feasible loading of each vehicle used. Since it includes NP-hard routing and packing sub-problems, six heuristics are firstly designed to quickly compute good solutions for realistic instances. They are obtained by combining algorithms for the vehicle routing problem with time windows with heuristics for packing rectangles. Then, a Memetic algorithm is developed to improve the heuristic solutions. The quality and the efficiency of the proposed heuristics and metaheuristic are evaluated by adding time windows to a set of 144 instances with 15–255 customers and 15–786 items, designed by Iori et al. (Transport Sci 41:253–264, 2007) for the case without time windows.  相似文献   

19.
This paper presents a new sweep-based heuristic for the fleet size and mix vehicle routing problem. This problem involves two kinds of decisions: the selection of a mix of vehicles among the available vehicle types and the routing of the selected fleet. The proposed algorithm first generates a large number of routes that are serviced by one or two vehicles. The selection of routes and vehicles to be used is then made by solving to optimality, in polynomial time, a set-partitioning problem having a special structure. Results on a set of benchmark test problems show that the proposed heuristic produces excellent solutions in short computing times. Having a fast but good solution method is needed for transportation companies that rent a significant part of their fleet and consequently can take advantage of frequent changes in fleet composition. Finally, the proposed heuristic produced new best-known solutions for three of the test problems; these solutions are reported.  相似文献   

20.
The asymmetric vehicle routing problem with simultaneous pickup and deliveries is considered. This paper develops four new classes of valid inequalities for the problem. We generalize the idea of a no-good cut. Together, these help us solve 45-node randomly generated problem instances more efficiently. We report results on a set of benchmark instances in literature. In this set, we are able to show an order of magnitude improvement in computational times over currently published results in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号