首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A study is made of the interaction between three coplanar Griffith cracks which are located symmetrically in the midplane of an orthotropic layer of finite thickness 2h sandwiched between two identical orthotropic half planes. The Fourier transform technique is used to reduce the elastostatic problem to a set of integral equations which have been solved by using the finite Hilbert transform and Cooke's results. Analytical expressions for the stress intensity factors at the tips of cracks are obtained for large values of h. Numerical results concerning the interaction effects are presented with physical significance. It is shown that interaction effects are either shielding or amplification depending on the location of cracks, spacing of crack-tips, and the thickness of the layer. The stress magnification factors at the crack-tips are also calculated.  相似文献   

2.
In this paper, the basic solution of two collinear cracks in a piezoelectric material plane subjected to a uniform tension loading is investigated by means of the non-local theory. Through the Fourier transform, the problem is solved with the help of two pairs of integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the integral equations, the jumps of displacements across the crack surfaces are directly expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the interaction of two cracks, the materials constants and the lattice parameter on the stress field and the electric displacement field near crack tips. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to using the maximum stress as a fracture criterion in piezoelectric materials.  相似文献   

3.
In this paper several finite cracks with constant length (Yoffe-type crack) propagating in an orthotropic strip were studied. The distributed dislocation technique is used to carry out stress analysis in an orthotropic strip containing moving cracks under anti-plane loading. The solution of a moving screw dislocation is obtained in an orthotropic strip by means of Fourier transform method. The stress components reveal the familiar Cauchy singularity at the location of dislocation. The solution is employed to derive integral equations for a strip weakened by moving cracks. Finally several examples are solved and the numerical results for the stress intensity factor are obtained. The influences of the geometric parameters, the thickness of the orthotropic strip, the crack size and speed have significant effects on the stress intensity factors of crack tips which are displayed graphically.  相似文献   

4.
The transient response of a semi-infinite transversely isotropic piezoelectric layer containing a surface crack is analyzed for the case where anti-plane mechanical and in-plane electric impacts are suddenly exerted at the layer end. The integral transform techniques are used to reduce the associated mixed initial boundary value problem to a singular integral equation of the first kind, which can be solved numerically via the Lobatto–Chebyshev collocation technique. Dynamic field intensity factors are determined by employing a numerical inversion of the Laplace transform. The dynamic stress intensity factors are presented graphically and the effects of the material properties and geometric parameters are examined. Received: June 30, 2003  相似文献   

5.
This paper concerns with the problem of determining the anti-plane dynamic stress distributions around four coplanar finite length Griffith cracks moving steadily with constant velocity in an infinitely long finite width strip. The two-dimensional Fourier transforms have been used to reduce the mixed boundary value problem to the solution of five integral equations. These integral equations have been solved using the finite Hilbert transform technique to obtain the analytic form of crack opening displacement and stress intensity factors. Numerical results have also been depicted graphically.  相似文献   

6.
夹杂和裂纹的相互作用及端点相交的奇性性态分析   总被引:2,自引:1,他引:1  
利用单根裂纹和单根夹杂的基本解,通过弹性力学的线性叠加原理,将平面裂纹和夹杂相互作用的问题归结为解一组带有柯西型奇异积分的积分方程组,计算了裂纹和夹杂端点的应力强度因子,给出了一些数值例子,并对夹杂和裂纹水平接触时的情形作了奇性分析,结果可作为研究夹杂尖端引起的裂纹及其扩展的工程分析的计算模型。  相似文献   

7.
This work is devoted to analyzing a thermal shock problem of an elastic strip made of functionally graded materials containing a crack parallel to the free surface based on a generalized fractional heat conduction theory. The embedded crack is assumed to be insulated. The Fourier transform and the Laplace transform are employed to solve a mixed initial-boundary value problem associated with a time-fractional partial differential equation. Temperature and thermal stresses in the Laplace transform domain are evaluated by solving a system of singular integral equations. Numerical results of the thermoelastic fields in the time domain are given by applying a numerical inversion of the Laplace transform. The temperature jump between the upper and lower crack faces and the thermal stress intensity factors at the crack tips are illustrated graphically, and phase lags of heat flux, fractional orders, and gradient index play different roles in controlling heat transfer process. A comparison of the temperature jump and thermal stress intensity factors between the non-Fourier model and the classical Fourier model is made. Numerical results show that wave-like behavior and memory effects are two significant features of the fractional Cattaneo heat conduction, which does not occur for the classical Fourier heat conduction.  相似文献   

8.
In this paper, quasi-static fatigue crack growth simulations of homogeneous and bi-material interfacial cracks have been performed using element free Galerkin method (EFGM) under mechanical as well as thermo-elastic load. The thermo-elastic fracture problem is decoupled into thermal and elastic problems. The temperature distribution obtained by solving heat conduction equation is used as input in the elastic problem to get the displacement and stress fields. Discontinuities in the temperature and displacement fields are captured by extrinsic partition of unity enrichment technique. The values of stress intensity factors have been extracted from the EFGM solution by domain based interaction integral approach. The standard Paris fatigue crack growth law has been implemented for the life estimation of various model problems. The results obtained by EFGM under mechanical and thermo-elastic loads were compared with those obtained by FEM using remeshing approach.  相似文献   

9.
Singular perturbation theory is used to solve the integral equationswhich occur when treating finite-length crack problems in porouselastic materials. The method provides the stress intensityfactors which characterize the near crack tip stress and displacementfields for small times. The method also gives the stress andpore pressure fields on the fracture plane for small times relativeto the diffusive time scale. In this paper, the authors treatcrack problems which are unmixed in the pore pressure boundarycondition on the fracture plane. The Abelian result that smalltimes correspond, in Laplace transform space, to large valuesof the transform variable is used to formulate the problemsin terms of a small parameter. Rescaling on this small parameterleads to inner problems which are eigensolutions of the semi-infiniteproblems treated earlier by the authors. The outer solutionsare given by elastic eigensolutions together with appropriatefluid dipole responses. These outer solutions give the completestress and pore pressure fields except in the neighbourhoodof the crack tips; in this region the outer solutions are asymptoticallymatched with inner solutions. The full outer solutions are givenhere as an asymptotic expansion for small times and enable thedevelopment of the outer fields to be followed in real time.A reciprocal theorem in Laplace transform space is used to checkthe small-time solutions. The inner problem is rescaled to asemi-infinite crack problem, so eigensolutions of this semi-infiniteproblem are used together with the known asymptotic behaviourof the real solution to identify the stress intensity factor.The stress intensity factor is then related to an integral involvingthe inner limit of the outer solution together with the eigensolutionof the semi-infinite problem. Using this integral, we recoverthe result for the stress intensity factor found using singularperturbation theory. A ‘nearly’ invariant integralanalogous to the invariant M integral used in elastostaticsis derived. Unfortunately, the poroelastic analogue is not invariant,although it is used to verify the small-time results.  相似文献   

10.
This paper presents the implementation of element free Galerkin method for the stress analysis of structures having cracks at the interface of two dissimilar materials. The material discontinuity at the interface has been modeled using a jump function with a jump parameter that governs its strength. The jump function enriches the approximation by the addition of special shape function that contains discontinuities in the derivative. The trial and test functions of the weak form are constructed using moving least-square interpolants in each material domain. An intrinsic enrichment criterion with enriched basis has been used to model the crack tip stress fields. The mixed mode (complex) stress intensity factors for bi-material interface cracks are numerically evaluated using the modified domain form of interaction integral. The numerical results are obtained for edge and center cracks lying at the bi-material interface, and are found to be in good agreement with the reference solutions for the interfacial crack problems.  相似文献   

11.
本文对两个非均匀半平面粘结的非均匀平面的裂纹问题作了分析,文中假定两种材料的泊松比v相同,但杨氏模量随坐标x按不同形式的指数函数变化.本文使用非均匀平面问题的单裂纹解及富氏变换方法, 使问题归为一个柯西型奇异积分方程,最后对应力强度因子的计算给出了若干数值例子.  相似文献   

12.
The present study examined mixed mode cracking in a transversely isotropic infinite cylinder. The solutions to axisymmetric Volterra climb and glide dislocations in an infinite circular cylinder of the transversely isotropic material are first obtained. The solutions are represented in terms of the biharmonic stress function. Next, the problem of a transversely isotropic infinite cylinder with a set of concentric axisymmetric penny-shaped, annular, and circumferential cracks is formulated using the distributed dislocation technique. Two types of loadings are considered: (i) the lateral cylinder is loaded by two self-equilibrating distributed shear stresses; (ii) the curved surface of the cylinder is under the action of a distributed normal stress. The resulting integral equations are solved by using a numerical scheme to compute the dislocation density on the borders of the cracks. The dislocation densities are employed to determine stress intensity factors for axisymmetric interacting cracks. Finally, a good amount of examples are solved to depict the effect of crack type and location on the stress intensity factors at crack tips and interaction between cracks. Numerical solutions for practical materials are presented and the effect of transverse isotropy on stress intensity factors is discussed.  相似文献   

13.
研究了无限压电体内共线周期裂纹间的相互作用的问题,并且考虑了裂纹尖端的饱和条带作用.应用Stroh理论和保角变换方法,得到了共线裂纹的一般周期解A·D2对应力强度因子和饱和条带尺寸进行了理论推导,详细分析了它们与周期长和半裂纹长的比值h/l之间的关系.数值结果表明:1) 当h/l大于4.0时,裂纹之间的相互作用对应力强度因子影响较小,无限压电体内周期裂纹和单裂纹的值几乎相等.这表明当h大于4.0l时,建立裂纹扩展判据时可以近似忽略裂纹之间的相互作用;2) 周期裂纹的饱和条带尺寸趋近于单裂纹值的速度,取决于无穷远处的电载荷,通常无穷远处的电载荷越大,趋近速度越慢.  相似文献   

14.
利用Schmidt方法分析了位于正交各向异性材料中的张开型界面裂纹问题.经富立叶变换使问题的求解转换为求解两对对偶积分方程,其中对偶积分方程的变量为裂纹面张开位移.最终获得了应力强度因子的数值解.与以前有关界面裂纹问题的解相比,没遇到数学上难以处理的应力振荡奇异性,裂纹尖端应力场的奇异性与均匀材料中裂纹尖端应力场的奇异性相同.同时当上下半平面材料相同时,可以得到其精确解.  相似文献   

15.
An extended displacement discontinuity (EDD) boundary integral equation method is proposed for analysis of arbitrarily shaped planar cracks in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack surface. Green's functions for unit point EDDs in an infinite three-dimensional medium of 2D hexagonal QC are derived using the Hankel transform method. Based on the Green's functions and the superposition theorem, the EDD boundary integral equations for an arbitrarily shaped planar crack in an infinite 2D hexagonal QC body are established. Using the EDD boundary integral equation method, the asymptotic behavior along the crack front is studied and the classical singular index of 1/2 is obtained at the crack edge. The extended stress intensity factors are expressed in terms of the EDDs across crack surfaces. Finally, the energy release rate is obtained using the definitions of the stress intensity factors.  相似文献   

16.
横观各向同性电磁弹性介质中裂纹对SH波的散射   总被引:2,自引:0,他引:2  
研究横观各向同性电磁弹性介质中裂纹和反平面剪切波之间的相互作用.根据电磁弹性介质的平衡运动微分方程、电位移和磁感应强度微分方程,得到SH波传播的控制场方程.引入线性变换,将控制场方程简化为Helmholtz方程和两个Laplace方程A·D2通过Fourier变换,并采用非电磁渗透型裂面边界条件,得到了柯西奇异积分方程组.利用Chebyshev多项式求解积分方程,得到应力场、电场和磁场以及动应力强度因子的表达,并给出了数值算例.  相似文献   

17.
双I—型裂纹断裂动力学问题的非局部理论解   总被引:5,自引:1,他引:4  
研究了非局部理论双中I-型裂纹弹性波散射的力学问题,并利用富里叶变换使本问题的求解转换为三重积分方程的求解,进而采用新方法和利用一维非局部积分核代替二维非局部积分核来确定裂纹尖端的应力状态,这种方法就是Schmidt方法,所得结是比艾林根研究断裂静力学问题的结果准确和更加合理,克服了艾林根研究断裂静力学问题时遇到的数学困难,与经典弹性解相比,裂纹尖端不再出现物理意义下不合理的应力奇异性,并能够解释宏观裂纹与微观裂纹的力学问题。  相似文献   

18.
采用Schmidt方法分析压电材料中非对称平行的双可导通裂纹的断裂性能.利用Fourier变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程.为了求解对偶积分方程,直接把裂纹面位移差函数展开成Jacobi多项式形式.最终得到了裂纹的应力强度因子与电位移强度因子之间的关系.数值结果表明,应力强度因子和电位移强度因子与裂纹间的距离、裂纹的几何尺寸有关;与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子.同时可以发现裂纹间的“屏蔽”效应也在压电材料中出现.  相似文献   

19.
The problem of two collinear electromagnetically dielectric cracks in a magnetoelectroelastic material is investigated under in-plane electro-magneto-mechanical loadings. The semi-permeable crack-face boundary conditions are adopted to simulate the case of two collinear cracks full of a dielectric interior. Utilizing the Fourier transform technique, the boundary-value problem is reduced to solving singular integral equations with Cauchy kernel, which then are solved explicitly. The intensity factors of stress, electric displacement, magnetic induction, crack opening displacement (COD) and the energy release rates near the inner and outer crack tips are determined in closed forms for two cases of possible far-field electro-magneto-mechanical loadings respectively. Numerical results for a BaTiO3–CoFe2O4 composite are carried out to show the effects of applied mechanical loadings on the crack-face electric displacement and magnetic induction, the stress intensity factor and the COD intensity factor, respectively. The obtained results reveal that when the applied mechanical loading is stress, applied electromagnetic loadings have no influences on the stress intensity factor. When the applied mechanical loadings is train, the applied positive electromagnetic loadings decrease the intensity factors of stress and COD, and the applied negative ones increase the intensity factors of stress and COD. The variations of energy release rates are also given to show the effects of the geometry of two collinear dielectric cracks.  相似文献   

20.
The dual reciprocity boundary element method employing the step by step time integration technique is developed to analyse two-dimensional dynamic crack problems. In this method the equation of motion is expressed in boundary integral form using elastostatic fundamental solutions. In order to transform the domain integral into an equivalent boundary integral, a general radial basis function is used for the derivation of the particular solutions. The dual reciprocity boundary element method is combined with an efficient subregion boundary element method to overcome the difficulty of a singular system of algebraic equations in crack problems. Dynamic stress intensity factors are calculated using the discontinuous quarter-point elements. Several examples are presented to show the formulation details and to demonstrate the computational efficiency of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号