首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
唐跃龙  华玉春 《计算数学》2023,45(1):130-140
本文考虑全离散插值系数有限元方法求解半线性抛物最优控制问题,其中控制变量用分片常数函数逼近,状态变量和对偶状态变量用分片线性函数逼近.对于方程中的半线性项,先用插值系数技巧处理,再用牛顿迭代法求解.通过引入一些辅助变量和投影算子,并利用有限元空间的逼近性质,得到半线性抛物最优控制问题插值系数有限元方法的收敛性结果;数值算例结果验证了理论结果的正确性.  相似文献   

2.
In this paper, we consider a modified anomalous subdiffusion equation (MASFE) for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. Firstly, a semi-discrete approximation for the MASFE is proposed. The stability and convergence of the semi-discrete approximation are discussed. Secondly, a finite element approximation for the MASFE is derived. The stability and convergence of the finite element approximation are investigated, respectively. Finally, some numerical examples are presented to demonstrate the effectiveness of theoretical analysis.  相似文献   

3.
In this paper finite element approximation of space fractional optimal control problem with integral state constraint is investigated. First order optimal condition and regularity of the control problem are discussed. A priori error estimates for control, state, adjoint state and lagrange multiplier are derived. The nonlocal property of the fractional derivative results in a dense coefficient matrix of the discrete state and adjoint state equation. To reduce the computational cost a fast projection gradient algorithm is developed based on the Toeplitz structure of the coefficient matrix. Numerical experiments are carried out to illustrate the theoretical findings.  相似文献   

4.
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.  相似文献   

5.
In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.  相似文献   

6.
We study the approximation of control problems governed by elliptic partial differential equations with pointwise state constraints. For a finite dimensional approximation of the control set and for suitable perturbations of the state constraints, we prove that the corresponding sequence of discrete control problems converges to a relaxed problem. A similar analysis is carried out for problems in which the state equation is discretized by a finite element method.  相似文献   

7.
This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.  相似文献   

8.
In this paper, we investigate the superconvergence property of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order $k=1$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. A superconvergent approximation of the control variable $u$ will be constructed by a projection of the discrete adjoint state. It is proved that this approximation have convergence order $h^{2}$ in $L^{\infty}$-norm. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

9.
This paper is concerned with a shape sensitivity analysis of a viscous incompressible fluid driven by Stokes equations. The structures of continuous shape gradients with respect to the shape of the variable domain for some given cost functionals are established by introducing the Piola transformation and then deriving the state derivative and its associated adjoint state. Finally we give the finite element approximation of the problem and a gradient type algorithm is effectively used for our problem.  相似文献   

10.
We analyze a finite element approximation of an elliptic optimal control problem with pointwise bounds on the gradient of the state variable. We derive convergence rates if the control space is discretized implicitly by the state equation. In contrast to prior work we obtain these results directly from classical results for the W 1,∞-error of the finite element projection, without using adjoint information. If the control space is discretized directly, we first prove a regularity result for the optimal control to control the approximation error, based on which we then obtain analogous convergence rates.  相似文献   

11.
In this paper, we investigate the L ??(L 2)-error estimates and superconvergence of the semidiscrete mixed finite elementmethods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k ?? 0). We derive error estimates for approximation of both state and control. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problems.  相似文献   

12.
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.  相似文献   

13.
In this article, we shall give a brief review on the fully discrete mixed finite element method for general optimal control problems governed by parabolic equations. The state and the co-state are approximated by the lowest order Raviart–Thomas mixed finite element spaces and the control is approximated by piecewise constant elements. Furthermore, we derive a posteriori error estimates for the finite element approximation solutions of optimal control problems. Some numerical examples are given to demonstrate our theoretical results.  相似文献   

14.
Summary. In this paper, we derive a posteriori error estimates for the finite element approximation of quadratic optimal control problem governed by linear parabolic equation. We obtain a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive finite element approximation schemes for the control problem. Received July 7, 2000 / Revised version received January 22, 2001 / Published online January 30, 2002 RID="*" ID="*" Supported by EPSRC research grant GR/R31980  相似文献   

15.
In this paper we analyze a characteristic finite element approximation of convex optimal control problems governed by linear convection-dominated diffusion equations with pointwise inequality constraints on the control variable, where the state and co-state variables are discretized by piecewise linear continuous functions and the control variable is approximated by either piecewise constant functions or piecewise linear discontinuous functions. A priori error estimates are derived for the state, co-state and the control. Numerical examples are given to show the efficiency of the characteristic finite element method.  相似文献   

16.
In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results.  相似文献   

17.
In this paper, we present an a posteriori error analysis for finite element approximation of distributed convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for control problems. Explicit estimates are obtained for some model problems which frequently appear in real-life applications.  相似文献   

18.
In this article a theoretical framework for the Galerkin finite element approximation to the steady state fractional advection dispersion equation is presented. Appropriate fractional derivative spaces are defined and shown to be equivalent to the usual fractional dimension Sobolev spaces Hs. Existence and uniqueness results are proven, and error estimates for the Galerkin approximation derived. Numerical results are included that confirm the theoretical estimates. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

19.
In this paper, we discuss the superconvergence of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and costate are approximated by the order $k=1$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximation of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that this approximation has convergence order $h^{2}$ in $L^{\infty}$-norm. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

20.
We consider an elliptic optimal control problem with control constraints and pointwise bounds on the gradient of the state. We present a tailored finite element approximation to this optimal control problem, where the cost functional is approximated by a sequence of functionals which are obtained by discretizing the state equation with the help of the lowest order Raviart–Thomas mixed finite element. Pointwise bounds on the gradient variable are enforced in the elements of the triangulation. Controls are not discretized. Error bounds for control and state are obtained in two and three space dimensions. A numerical example confirms our analytical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号