首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error is of optimal order. The existence of such six-tuples of vertices is a precondition for a successful application of certain post-processing procedures to the finite-element approximations of the solutions of differential problems. This work was supported by the grant GA ČR 103/05/0292.  相似文献   

2.
The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of $n$ points in~$\Real^3$ with spread $\Delta$ has complexity $O(\Delta^3)$. This bound is tight in the worst case for all $\Delta = O(\sqrt{n})$. In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of $k$-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any $n$ and $\Delta = O(n)$, we construct a regular triangulation of complexity $\Omega(n\Delta)$ whose $n$ vertices have spread $\Delta$.  相似文献   

3.
It is well known that the complexity of the Delaunay triangulation of $n$ points in $\RR ^d$, i.e., the number of its simplices, can be $\Omega (n^{\lceil {d}/{2}\rceil })$. In particular, in $\RR ^3$, the number of tetrahedra can be quadratic. Put another way, if the points are uniformly distributed in a cube or a ball, the expected complexity of the Delaunay triangulation is only linear. The case of points distributed on a surface is of great practical importance in reverse engineering since most surface reconstruction algorithms first construct the Delaunay triangulation of a set of points measured on a surface. In this paper we bound the complexity of the Delaunay triangulation of points distributed on the boundary of a given polyhedron. Under a mild uniform sampling condition, we provide deterministic asymptotic bounds on the complexity of the three-dimensional Delaunay triangulation of the points when the sampling density increases. More precisely, we show that the complexity is $O(n^{1.8})$ for general polyhedral surfaces and $O(n\sqrt{n})$ for convex polyhedral surfaces. Our proof uses a geometric result of independent interest that states that the medial axis of a surface is well approximated by a subset of the Voronoi vertices of the sample points.  相似文献   

4.
In this paper we present new optimality results for the Delaunay triangulation of a set of points in ℝ d . These new results are true in all dimensionsd. In particular, we define a power function for a triangulation and show that the Delaunay triangulation minimizes the power function over all triangulations of a point set. We use this result to show that (a) the maximum min-containment radius (the radius of the smallest sphere containing the simplex) of the Delaunay triangulation of a point set in ℝ d is less than or equal to the maximum min-containment radius of any other triangulation of the point set, (b) the union of circumballs of triangles incident on an interior point in the Delaunay triangulation of a point set lies inside the union of the circumballs of triangles incident on the same point in any other triangulation of the point set, and (c) the weighted sum of squares of the edge lengths is the smallest for Delaunay triangulation, where the weight is the sum of volumes of the triangles incident on the edge. In addition we show that if a triangulation consists of only self-centered triangles (a simplex whose circumcenter falls inside the simplex), then it is the Delaunay triangulation.  相似文献   

5.
6.
We study the computational complexity of the vertex cover problem in the class of planar graphs (planar triangulations) admitting a plane representation whose faces are triangles. It is shown that the problem is strongly NP-hard in the class of 4-connected planar triangulations in which the degrees of vertices are of order O(log n), where n is the number of vertices, and in the class of plane 4-connected Delaunay triangulations based on the Minkowski triangular distance. A pair of vertices in such a triangulation is adjacent if and only if there is an equilateral triangle ?(p, λ) with pR2 and λ > 0 whose interior does not contain triangulation vertices and whose boundary contains this pair of vertices and only it, where ?(p, λ) = p + λ? = {xR2: x = p + λa, a ∈ ?}; here ? is the equilateral triangle with unit sides such that its barycenter is the origin and one of the vertices belongs to the negative y-axis. Keywords: computational complexity, Delaunay triangulation, Delaunay TD-triangulation.  相似文献   

7.
We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced for a perturbed point set provided the transition functions are bi-Lipschitz with a constant close to 1, and the original sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold. The output complex is naturally endowed with a piecewise-flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric. In this case the output complex is also a Delaunay triangulation of its vertices with respect to this piecewise-flat metric.  相似文献   

8.
A triangulation of a connected closed surface is called weakly regular if the action of its automorphism group on its vertices is transitive. A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. Clearly, a weakly regular triangulation is degree-regular. In [8], Lutz has classified all the weakly regular triangulations on at most 15 vertices. In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices. In this article, we have proved that any degree-regular triangulation of the torus is weakly regular. We have shown that there exists ann-vertex degree-regular triangulation of the Klein bottle if and only if n is a composite number ≥ 9. We have constructed two distinctn-vertex weakly regular triangulations of the torus for eachn ≥ 12 and a (4m + 2)-vertex weakly regular triangulation of the Klein bottle for eachm ≥ 2. For 12 ≤n ≤ 15, we have classified all then-vertex degree-regular triangulations of the torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among the last 7, only one is weakly regular.  相似文献   

9.
Stabbing Delaunay Tetrahedralizations   总被引:1,自引:0,他引:1  
A Delaunay tetrahedralization of $n$ vertices is exhibited for which a straight line can pass through the interiors of $\Theta(n^2)$ tetrahedra. This solves an open problem of Amenta, who asked whether a line can stab more than $O(n)$ tetrahedra. The construction generalizes to higher dimensions: in $d$ dimensions, a line can stab the interiors of $\Theta(n^{\lceil d / 2 \rceil})$ Delaunay $d$-simplices. The relationship between a Delaunay triangulation and a convex polytope yields another result: a two-dimensional slice of a $d$-dimensional $n$-vertex polytope can have $\Theta(n^{\lfloor d / 2 \rfloor})$ facets. This last result was first demonstrated by Amenta and Ziegler, but the construction given here is simpler and more intuitive.  相似文献   

10.
The starting point of the analysis in this paper is the following situation: "In a bounded domain in 2, let a finite set of points be given. A triangulation of that domain has to be found, whose vertices are the given points and which is `suitable' for the linear conforming Finite Element Method (FEM)." The result of this paper is that for the discrete Poisson equation and under some weak additional assumptions, only the use of Delaunay triangulations preserves the maximum principle.  相似文献   

11.
We consider measures for triangulations ofR n. A new measure is introduced based on the ratio of the length of the sides and the content of the subsimplices of the triangulation. In a subclass of triangulations, which is appropriate for computing fixed points using simplicial subdivisions, the optimal one according to this measure is calculated and some of its properties are given. It is proved that for the average directional density this triangulation is optimal (within the subclass) asn goes to infinity. Furthermore, we compare the measures of the optimal triangulation with those of other triangulations. We also propose a new triangulation of the affine hull of the unit simplex. Finally, we report some computational experience that confirms the theoretical results.  相似文献   

12.
Delaunay triangulation and its complementary structure the Voronoi polyhedra form two of the most fundamental constructs of computational geometry. Delaunay triangulation offers an efficient method for generating high-quality triangulations. However, the generation of Delaunay triangulations in 3D with Watson's algorithm, leads to the appearance of silver tetrahedra, in a relatively large percentage. A different method for generating high-quality tetrahedralizations, based on Delaunay triangulation and not presenting the problem of sliver tetrahedra, is presented. The method consists in a tetrahedra division procedure and an efficient method for optimizing tetrahedral meshes, based on the application of a set of topological Delaunay transformations for tetrahedra and a technique for node repositioning. The method is robust and can be applied to arbitrary unstructured tetrahedral meshes, having as a result the generation of high-quality adaptive meshes with varying density, totally eliminating the appearance of sliver elements. In this way it offers a convenient and highly flexible algorithm for implementation in a general purpose 3D adaptive finite element analysis system. Applications to various engineering problems are presented  相似文献   

13.
Delaunay triangulations and Voronoi diagrams have found numerous applications in surface modeling, surface mesh generation, deformable surface modeling and surface reconstruction. Many algorithms in these applications begin by constructing the three-dimensional Delaunay triangulation of a finite set of points scattered over a surface. Their running-time therefore depends on the complexity of the Delaunay triangulation of such point sets. Although the complexity of the Delaunay triangulation of points in R3 may be quadratic in the worst case, we show in this paper that it is only linear when the points are distributed on a fixed set of well-sampled facets of R3 (e.g. the planar polygons in a polyhedron). Our bound is deterministic and the constants are explicitly given.  相似文献   

14.
15.
We show that nondegenerate Delaunay triangulations satisfy a combinatorial property called 1-toughness. A graphG is1-tough if for any setP of vertices,c(G–P)|G|, wherec(G–P) is the number of components of the graph obtained by removingP and all attached edges fromG, and |G| is the number of vertices inG. This property arises in the study of Hamiltonian graphs: all Hamiltonian graphs are 1-tough, but not conversely. We also show that all Delaunay triangulationsT satisfy the following closely related property: for any setP of vertices the number of interior components ofT–P is at most |P|–2, where an interior component ofT–P is a component that contains no boundary vertex ofT. These appear to be the first nontrivial properties of a purely combinatorial nature to be established for Delaunay triangulations. We give examples to show that these bounds are best possible and are independent of one another. We also characterize the conditions under which a degenerate Delaunay triangulation can fail to be 1-tough. This characterization leads to a proof that all graphs that can be realized as polytopes inscribed in a sphere are 1-tough. One consequence of the toughness results is that all Delaunay triangulations and all inscribable graphs have perfect matchings.This research was sponsored in part by the National Science Foundation under Grant IRI-88-02457.  相似文献   

16.
Generalized delaunay triangulation for planar graphs   总被引:7,自引:0,他引:7  
We introduce the notion of generalized Delaunay triangulation of a planar straight-line graphG=(V, E) in the Euclidean plane and present some characterizations of the triangulation. It is shown that the generalized Delaunay triangulation has the property that the minimum angle of the triangles in the triangulation is maximum among all possible triangulations of the graph. A general algorithm that runs inO(|V|2) time for computing the generalized Delaunay triangulation is presented. When the underlying graph is a simple polygon, a divide-and-conquer algorithm based on the polygon cutting theorem of Chazelle is given that runs inO(|V| log |V|) time.Supported in part by the National Science Foundation under Grants DCR 8420814 and ECS 8340031.  相似文献   

17.
For any finite point setS inE d, an oriented matroid DOM (S) can be defined in terms of howS is partitioned by Euclidean hyperspheres. This oriented matroid is related to the Delaunay triangulation ofS and is realizable, because of thelifting property of Delaunay triangulations. We prove that the same construction of aDelaunay oriented matroid can be performed with respect to any smooth, strictly convex distance function in the planeE 2 (Theorem 3.5). For these distances, the existence of a Delaunay oriented matroid cannot follow from a lifting property, because Delaunay triangulations might be nonregular (Theorem 4.2(i). This is related to the fact that the Delaunay oriented matroid can be nonrealizable (Theorem 4.2(ii). This research was partially supported by the Spanish Grant DGICyT PB 92/0498-C02 and the David and Lucile Packard Foundation.  相似文献   

18.
This paper deals with the approximation of the unfolding of a smooth globally developable surface (i.e. "isometric" to a domain of ) with a triangulation. We prove the following result: let Tn be a sequence of globally developable triangulations which tends to a globally developable smooth surface S in the Hausdorff sense. If the normals of Tn tend to the normals of S, then the shape of the unfolding of Tn tends to the shape of the unfolding of S. We also provide several examples: first, we show globally developable triangulations whose vertices are close to globally developable smooth surfaces; we also build sequences of globally developable triangulations inscribed on a sphere, with a number of vertices and edges tending to infinity. Finally, we also give an example of a triangulation with strictly negative Gauss curvature at any interior point, inscribed in a smooth surface with a strictly positive Gauss curvature. The Gauss curvature of these triangulations becomes positive (at each interior vertex) only by switching some of their edges.  相似文献   

19.
Given a triangulation of points in the plane and a function on the points, one may consider the Dirichlet energy, which is related to the Dirichlet energy of a smooth function. In fact, the Dirichlet energy can be derived from a finite element approximation. S. Rippa showed that the Dirichlet energy (which he refers to as the “roughness”) is minimized by the Delaunay triangulation by showing that each edge flip which makes an edge Delaunay decreases the energy. In this paper, we introduce a Dirichlet energy on a weighted triangulation which is a generalization of the energy on unweighted triangulations and an analogue of the smooth Dirichlet energy on a domain. We show that this Dirichlet energy has the property that each edge flip which makes an edge weighted Delaunay decreases the energy. The proof is done by a direct calculation, and so gives an alternate proof of Rippa’s result.  相似文献   

20.
A Catalan triangulation of the Möbius band is an abstract simplicial complex triangulating the Möbius band which uses no interior vertices, and has vertices labelled 1, 2, …, n in order as one traverses the boundary. We prove two results about the structure of this set, analogous to well-known results for Catalan triangulations of the disk. The first is a generating function for Catalan triangulations of M having n vertices, and the second is that any two such triangulations are connected by a sequence of diagonal-flips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号