首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider an approximate method based on the alternate trapezoidal quadrature for the eigenvalue problem given by a periodic singular Fredholm integral equation of second kind. For some convolution-type integral kernels, the eigenvalues of the discrete eigenvalue problem provided by the alternate trapezoidal quadrature method have multiplicity at least two, except up to two eigenvalues of multiplicity one. In general, these eigenvalues exhibit some symmetry properties that are not necessarily observed in the eigenvalues of the continuous problem. For a class of Hilbert-type kernels, we provide error estimates that are valid for a subset of the discrete spectrum. This subset is further enlarged in an improved quadrature method presented herein. The results are illustrated through numerical examples.  相似文献   

2.
Eigenvalue problems involving the Laplace operator on bounded domains lead to a discrete or a continuous set of eigenvalues. In this paper we highlight the case of an eigenvalue problem involving the Laplace operator which possesses, on the one hand, a continuous family of eigenvalues and, on the other hand, at least one more eigenvalue which is isolated in the set of eigenvalues of that problem.  相似文献   

3.
This paper is concerned with dependence of eigenvalues of certain closely discrete Sturm-Liouville problems. Topologies and geometric structures on various spaces of such problems are firstly introduced. Then, relationships between the analytic and geometric multiplicities of an eigenvalue are discussed. It is shown that all problems sufficiently close to a given problem have eigenvalues near each eigenvalue of the given problem. So, all the simple eigenvalues live in so-called continuous simple eigenvalue branches over the space of problems, and all the eigenvalues live in continuous eigenvalue branches over the space of self-adjoint problems. The analyticity, differentiability and monotonicity of continuous eigenvalue branches are further studied.  相似文献   

4.
In this note, we define a notion of multiplicity of focal points for conjoined bases of discrete symplectic systems. We show that this definition is equivalent to the one given by Kratz in [Discrete oscillation, J. Difference Equ. Appl., 9(1), 135–147 (2003)] and, furthermore, it has a natural connection to the newly developed continuous time theory on linear Hamiltonian differential systems. Many results obtained recently by Bohner, Do?lý, and Kratz regarding the non-negativity of the corresponding discrete quadratic functionals, Sturmian separation and comparison theorems, and oscillation theorems relating the number of focal points of a certain special conjoined basis with the number of eigenvalues of the associated discrete symplectic eigenvalue problem, are now formulated in terms of this alternative definition of multiplicities.  相似文献   

5.
We derive a stability criterion relative to a given measure on a finite time interval for distributed processes under parametric excitation. The corresponding theorem is proved by the comparison method combined with Lyapunov second method. Treating time as a parameter, we use the extremal properties of the Rayleigh quotient for self-adjoint operators in a Hilbert space, which in turn involves solving the eigenvalue problem generated by the linear operators corresponding to the original problem. The results are applied to establish sufficient conditions of technical stability relative to a given measure in the nonlinear problem of a hinged pole under the action of a continuous longitudinal force.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 58, pp. 107–116, 1986.  相似文献   

6.
The linear stability of the linear Phan-Thien Tanner (PTT) fluid model is investigated for plane Poiseuille flow. The PTT model involves parameters that can be used to fit shear and extensional data, which makes it suitable for describing both polymer solutions and melts. The base flow is determined using a Chebyshev-tau method. The linear stability equations are also discretized using Chebyshev approximations to furnish a generalized eigenvalue problem. The spectrum is shown to comprise a continuous part and a discrete part. The theoretical and numerical results are validated for the UCM and Oldroyd-B models, which are special cases of the PTT model, by comparing with results in the literature. It is demonstrated that the linear extensional and elasticity parameters considered. The computational efficiency and accuracy of the numerical method are also investigated.  相似文献   

7.
The linear stability of the linear Phan-Thien Tanner (PTT) fluid model is investigated for plane Poiseuille flow. The PTT model involves parameters that can be used to fit shear and extensional data, which makes it suitable for describing both polymer solutions and melts. The base flow is determined using a Chebyshev-tau method. The linear stability equations are also discretized using Chebyshev approximations to furnish a generalized eigenvalue problem. The spectrum is shown to comprise a continuous part and a discrete part. The theoretical and numerical results are validated for the UCM and Oldroyd-B models, which are special cases of the PTT model, by comparing with results in the literature. It is demonstrated that the linear PTT fluid is stable to infinitesimal disturbances with respect to the range of shear-thinning, extensional and elasticity parameters considered. The computational efficiency and accuracy of the numerical method are also investigated.  相似文献   

8.
By using harmonic analysis and representation theory, we determine explicitly the L2 spectrum of the Hodge-de Rham Laplacian acting on quaternionic hyperbolic spaces and we show that the unique possible discrete eigenvalue and the lowest continuous eigenvalue can both be realized by some subspace of hypereffective differential forms. Similar results are obtained also for the Bochner Laplacian.  相似文献   

9.
This paper deals with a two-person zero-sum game called search allocation game (SAG), where a searcher allocates his searching resources in a search space to detect a target while the target takes a path running across the space to evade the searcher. We consider the discrete SAG and the continuous SAG defined on the discrete search space and the continuous one, respectively. In a general way, we prove an existence theorem of equilibrium points for both the SAGs and elucidate that an equilibrium of the continuous SAG is given by a convergence point of equilibria of the discrete SAG. After then we develop a method to solve a large size of the discrete problem with specific feasibility conditions. As one of numerical examples, we take so-called flaming datum search game, which is adequate to demonstrate the convergence theorem.  相似文献   

10.
Streamer ionization fronts are pulled fronts that propagate into a linearly unstable state; the spatial decay of the initial condition of a planar front selects dynamically one specific long-time attractor out of a continuous family. A stability analysis for perturbations in the transverse direction has to take these features into account. In this paper we show how to apply the Evans function in a weighted space for this stability analysis. Zeros of the Evans function indicate the intersection of the stable and unstable manifolds; they are used to determine the eigenvalues. Within this Evans function framework, we define a numerical dynamical systems method for the calculation of the dispersion relation as an eigenvalue problem. We also derive dispersion curves for different values of the electron diffusion constant and of the electric field ahead of the front. Numerical solutions of the initial value problem confirm the eigenvalue calculations. The numerical work is complemented with an analysis of the Evans function leading to analytical expressions for the dispersion relation in the limit of small and large wave numbers. The paper concludes with a fit formula for intermediate wave numbers. This empirical fit supports the conjecture that the smallest unstable wave length of the Laplacian instability is proportional to the diffusion length that characterizes the leading edge of the pulled ionization front. G. Derks acknowledges a travel grant of the Royal Society, which initiated this research, and a visitor grant of the Dutch funding agency NWO and the NWO-mathematics cluster NDNS+ to finish the work. The work was also supported by a CWI PhD grant for B. Meulenbroek.  相似文献   

11.
In this article a numerical solution for the evolution equation of a continuous time non-homogeneous semi-Markov process (NHSMP) is obtained using a quadrature method. The paper, after a short introduction to continuous time NHSMP, presents the numerical solution of the process evolution equation with a general quadrature method. Furthermore, the paper gives results that justify this approach, proving that the numerical solution tends to the evolution equation of the continuous time NHSMP. Moreover, the formulae related to some specific quadrature methods are given and a method for obtaining the discrete time NHSMP by applying a very particular quadrature formula for the discretization is shown. In this way the relation between the continuous and discrete time NHSMP is proved. Then, the problem of obtaining the continuous time NHSMP from the discrete one is considered. This problem is solved showing that the discrete process converges in law to the continuous one if the discretized time interval tends to zero. In addition, the discrete time NHSMP in matrix form is presented, and the fact that the solution to this process always exists is proved. Finally, an algorithm for solving the discrete time NHSMP is given. To illustrate the use of this algorithm for a discrete NHSMP, an example in the area of finance is presented.  相似文献   

12.
In this paper we propose and analyse adaptive finite element methods for computing the band structure of 2D periodic photonic crystals. The problem can be reduced to the computation of the discrete spectra of each member of a family of periodic Hermitian eigenvalue problems on a unit cell, parametrised by a two-dimensional parameter - the quasimomentum. These eigenvalue problems involve non-coercive elliptic operators with generally discontinuous coefficients and are solved by adaptive finite elements. We propose an error estimator of residual type and show it is reliable and efficient for each eigenvalue problem in the family. In particular we prove that if the error estimator converges to zero then the distance of the computed eigenfunction from the true eigenspace also converges to zero and the computed eigenvalue converges to a true eigenvalue with double the rate. We also prove that if the distance of a computed sequence of approximate eigenfunctions from the true eigenspace approaches zero, then so must the error estimator. The results hold for eigenvalues of any multiplicity. We illustrate the benefits of the resulting adaptive method in practice, both for fully periodic structures and also for the computation of eigenvalues in the band gap of structures with defect, using the supercell method.  相似文献   

13.
We present a computational method for solving a class of boundary-value problems in Sturm–Liouville form. The algorithms are based on global polynomial collocation methods and produce discrete representations of the eigenfunctions. Error control is performed by evaluating the eigenvalue problem residuals generated when the eigenfunctions are interpolated to a finer discretization grid; eigenfunctions that produce residuals exceeding an infinity-norm bound are discarded. Because the computational approach involves the generation of quadrature weights and arrays for discrete differentiation operations, our computational methods provide a convenient framework for solving boundary-value problems by eigenfunction expansion and other projection methods.  相似文献   

14.
For any self-adjoint realization S of a singular Sturm-Liouville equation on an interval (a,b) with limit-circle endpoints, we construct a family of self-adjoint realizations S r ,r ∈ (0,∞), of this equation on subintervals (a r ,b r ) of (a,b) such that every eigenvalue of S is the limit of a continuous eigenvalue branch of this family. Of particular interest are the cases when at least one endpoint is oscillatory or the leading coefficient function changes sign. In these cases, we show that the index determining each continuous eigenvalue branch has an infinite number of jump discontinuities and give an explicit characterization of these discontinuities.  相似文献   

15.
Criticality problem of nuclear tractors generally refers to an eigenvalue problem for the transport equations. In this paper, we deal with the eigenvalue of the anisotropic scattering transport equation in slab geometry. We propose a new discrete method which was called modified discrete ordinates method. It is constructed by redeveloping and improving discrete ordinates method in the space of L1(X). Different from traditional methods, norm convergence of operator approximation is proved theoretically. Furthermore, convergence of eigenvalue approximation and the corresponding error estimation are obtained by analytical tools.  相似文献   

16.
We will establish here a formula for the convergence factor of the method called residual inverse iteration, which is a method for nonlinear eigenvalue problems and a generalization of the well-known inverse iteration. The formula for the convergence factor is explicit and involves quantities associated with the eigenvalue to which the iteration converges, in particular the eigenvalue and eigenvector. Residual inverse iteration allows for some freedom in the choice of a vector w k and we can use the formula for the convergence factor to analyze how it depends on the choice of w k . We also use the formula to illustrate the convergence when the shift is close to the eigenvalue. Finally, we explain the slow convergence for double eigenvalues by showing that under generic conditions, the convergence factor is one, unless the eigenvalue is semisimple. If the eigenvalue is semisimple, it turns out that we can expect convergence similar to the simple case.  相似文献   

17.
Solution Bounds of the Continuous and Discrete Lyapunov Matrix Equations   总被引:1,自引:0,他引:1  
A unified approach is proposed to solve the estimation problem for the solution of continuous and discrete Lyapunov equations. Upper and lower matrix bounds and corresponding eigenvalue bounds of the solution of the so-called unified algebraic Lyapunov equation are presented in this paper. From the obtained results, the bounds for the solutions of continuous and discrete Lyapunov equations can be obtained as limiting cases. It is shown that the eigenvalue bounds of the unified Lyapunov equation are tighter than some parallel results and that the lower matrix bounds of the continuous Lyapunov equation are more general than the majority of those which have appeared in the literature.  相似文献   

18.
Eigenvectors and eigenvalues of discrete Laplacians are often used for manifold learning and nonlinear dimensionality reduction. Graph Laplacian is one widely used discrete laplacian on point cloud. It was previously proved by Belkin and Niyogithat the eigenvectors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator of the manifold in the limit of infinitely many data points sampled independently from the uniform distribution over the manifold. Recently, we introduced Point Integral method (PIM) to solve elliptic equations and corresponding eigenvalue problem on point clouds. In this paper, we prove that the eigenvectors and eigenvalues obtained by PIM converge in the limit of infinitely many random samples. Moreover, estimation of the convergence rate is also given.  相似文献   

19.
Continuous Frames, Function Spaces, and the Discretization Problem   总被引:1,自引:0,他引:1  
A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous superpositions. Associated to a given continuous frame we construct certain Banach spaces. Many classical function spaces can be identified as such spaces. We provide a general method to derive Banach frames and atomic decompositions for these Banach spaces by sampling the continuous frame. This is done by generalizing the coorbit space theory developed by Feichtinger and Gröchenig. As an important tool the concept of localization of frames is extended to continuous frames. As a byproduct we give a partial answer to the question raised by Ali, Antoine, and Gazeau whether any continuous frame admits a corresponding discrete realization generated by sampling.  相似文献   

20.
There is a family of potentials that minimize the lowest eigenvalue of a Schrödinger operator under the constraint of a given L p norm of the potential. We give effective estimates for the amount by which the eigenvalue increases when the potential is not one of these optimal potentials. Our results are analogous to those for the isoperimetric problem and the Sobolev inequality. We also prove a stability estimate for Hölder’s inequality, which we believe to be new.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号